Running Bitcoind – BitcoinWiki

[OC] Which front offices and agents are the 3 major newsbreakers connected to? I went through 6000+ tweets to find out!

If this sounds somewhat familiar, that's because I did a 2019-2020 version and posted it back in March.
In terms of changes from that post:
TL;DR
Tracked tweets of Woj, Shams and Haynes from 2018-2020 to see whether any of them report on a certain team or a certain agent's players more than their counterparts. Here is the main graph concerning a reporter's percentage of tweets per team separated into three periods (2019 season, 2020 offseason, 2020 season). Here is a separate graph with the Lakers and Warriors, because Haynes's percentages would skew the first graph.

During times like the NBA trade deadline or the lifting of the NBA free-agency moratorium, it’s not uncommon to see Twitter replies to (or Reddit comments about) star reporters reference their performance relative to others.
Woj is the preeminent scoop hound, but he is also notorious for writing hit pieces on LeBron (sources say it’s been widely rumoured that the reason for these is that Woj has always been unable to place a reliable source in LeBron’s camp). On the other end of the spectrum, it has been revealed that in exchange for exclusive intel on league memos and Pistons dealings, Woj wrote puff pieces on then-GM Joe Dumars (see above Kevin Draper link). Last summer, Woj was accused of being a Clippers shill on this very discussion board for noticeably driving the Kawhi Leonard free agency conversation towards the team.
This is the reason I undertook this project: to see whether some reporters have more sources in certain teams (and certain agencies) than other reporters.
First I’ll explain the methodology, then present the data with some initial comments.

Methodology

To make this manageable on myself, I limited myself to tracking the 3 major national reporters: Shams Charania of the Athletic, Chris Haynes of Yahoo Sports and the aforementioned Adrian Wojnarowski of ESPN.
The time period I initially tracked for was from January 1, 2020 to the end of the regular season March, but after finding a Twitter scraping tool on GitHub called Twint, I was able to easily retrieve all tweets since September 27, 2018. However, a month ago, Twitter closed their old API endpoints, and Twint ceased to work. I used vicinitas.io but the data loading became more time-consuming. Therefore, the tweets are up to the date of October 15 2020.
How I determined information was by manually parsing text tweets by the reporter (no retweets):
Now, I didn’t take every single text tweet:
Next, I had to assign possible teams to each tweet:
With all the methodology out of the way, here’s the data! (Here’s a link to a full Google Sheet)

Teams

Here's a graph of number of tweets per team per period, with the colours denoting reporter.
On a quick glance, here's which teams saw a significant period-over-period increase in number of tweets:
And here's which teams saw decreases over a period-by-period basis:
The problem with just using number of tweets is that it's not close on totals between Haynes vs. Woj or Shams. Here's a graph showing total number of tweets in each period for all three reporters. Haynes's most reported period doesn't even stack up to the least reported period of Woj or Shams.
Instead, let's look at percentage of tweets per team per period.
Now, you'll notice that there's two teams missing from the above graph: the Golden State Warriors and the Los Angeles Lakers. Here's the graphs for those two teams. As you can see, they would skew the previous graph far too much. During the 2019 NBA season, 27% of Chris Haynes's qualifying tweets could be possibly linked to the Warriors, and 14% of his qualifying tweets could be possibly linked to the Lakers.

Agents

Here's the top 10 agents in terms of number of potential tweets concerning their clients.
Agent Haynes Shams Woj Total
Rich Paul 15 28 24 67
Mark Bartelstein 4 16 30 50
Jeff Schwartz 3 10 25 38
Bill Duffy 2 13 14 29
Leon Rose 1 12 15 28
Aaron Mintz 2 9 15 26
Juan Perez 5 10 8 23
Aaron Goodwin 11 8 1 20
Steven Heumann 1 6 12 19
Sam Permut 1 13 5 19
Woj has the most tweets directly connected to agents by far. It wasn't uncommon to see "Player X signs deal with Team Y, Agent Z of Agency F tells ESPN." The agents that go to Woj (and some of their top clients):
One thing I found very intriguing: 15/16 of tweets concerning an Aaron Turner client were reported on by Shams. Turner is the head of Verus Basketball, whose clients include Terry Rozier, Victor Oladipo and Kevin Knox. Shams also reported more than 50% of news relating to clients of Sam Permut of Roc Nation. Permut is the current agent of Kyrie Irving, after Irving fired Jeff Wechsler near the beginning of the 2019 offseason. Permut also reps the Morris brothers and Trey Burke.
As for Chris Haynes, he doesn't really do much agent news (at least not at the level of Woj and Shams). However, he reported more than 50% of news relating to clients of Aaron Goodwin of Goodwin Sports Management, who reps Damian Lillard and DeMar DeRozan.
Here are the top 10 free agents from Forbes, along with their agent and who I predict will be the first/only one to break the news.
Player Agent Most Likely Reporter
Anthony Davis Rich Paul Too close to call, leaning Shams
Brandon Ingram Jeff Schwartz Woj
DeMar DeRozan Aaron Goodwin Haynes
Fred VanVleet Brian Jungreis Limited data
Andre Drummond Jeff Schwartz Woj
Montrezl Harrell Rich Paul Too close to call, leaning Shams
Gordon Hayward Mark Bartelstein Woj
Danilo Gallinari Michael Tellem Woj
Bogdan Bogdanovic Alexander Raskovic, Jason Ranne Limited data, but part of Wasserman, whose players are predominantly reported on by Woj
Davis Bertans Arturs Kalnitis Limited data
Thanks for reading! As always with this type of work, human error is not completely eliminated. If you think a tweet was mistakenly removed, feel free to drop me a line and I’ll try to explain my thought process on that specific tweet! Hope y’all enjoyed the research!
submitted by cilantro_samosa to nba [link] [comments]

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Great Reddit Scaling Bake-Off Public Proposal

Dragonchain Public Proposal TL;DR:

Dragonchain has demonstrated twice Reddit’s entire total daily volume (votes, comments, and posts per Reddit 2019 Year in Review) in a 24-hour demo on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. At the time, in January 2020, the entire cost of the demo was approximately $25K on a single system (transaction fees locked at $0.0001/txn). With current fees (lowest fee $0.0000025/txn), this would cost as little as $625.
Watch Joe walk through the entire proposal and answer questions on YouTube.
This proposal is also available on the Dragonchain blog.

Hello Reddit and Ethereum community!

I’m Joe Roets, Founder & CEO of Dragonchain. When the team and I first heard about The Great Reddit Scaling Bake-Off we were intrigued. We believe we have the solutions Reddit seeks for its community points system and we have them at scale.
For your consideration, we have submitted our proposal below. The team at Dragonchain and I welcome and look forward to your technical questions, philosophical feedback, and fair criticism, to build a scaling solution for Reddit that will empower its users. Because our architecture is unlike other blockchain platforms out there today, we expect to receive many questions while people try to grasp our project. I will answer all questions here in this thread on Reddit, and I've answered some questions in the stream on YouTube.
We have seen good discussions so far in the competition. We hope that Reddit’s scaling solution will emerge from The Great Reddit Scaling Bake-Off and that Reddit will have great success with the implementation.

Executive summary

Dragonchain is a robust open source hybrid blockchain platform that has proven to withstand the passing of time since our inception in 2014. We have continued to evolve to harness the scalability of private nodes, yet take full advantage of the security of public decentralized networks, like Ethereum. We have a live, operational, and fully functional Interchain network integrating Bitcoin, Ethereum, Ethereum Classic, and ~700 independent Dragonchain nodes. Every transaction is secured to Ethereum, Bitcoin, and Ethereum Classic. Transactions are immediately usable on chain, and the first decentralization is seen within 20 seconds on Dragon Net. Security increases further to public networks ETH, BTC, and ETC within 10 minutes to 2 hours. Smart contracts can be written in any executable language, offering full freedom to existing developers. We invite any developer to watch the demo, play with our SDK’s, review open source code, and to help us move forward. Dragonchain specializes in scalable loyalty & rewards solutions and has built a decentralized social network on chain, with very affordable transaction costs. This experience can be combined with the insights Reddit and the Ethereum community have gained in the past couple of months to roll out the solution at a rapid pace.

Response and PoC

In The Great Reddit Scaling Bake-Off post, Reddit has asked for a series of demonstrations, requirements, and other considerations. In this section, we will attempt to answer all of these requests.

Live Demo

A live proof of concept showing hundreds of thousands of transactions
On Jan 7, 2020, Dragonchain hosted a 24-hour live demonstration during which a quarter of a billion (250 million+) transactions executed fully on an operational network. Every single transaction on Dragonchain is decentralized immediately through 5 levels of Dragon Net, and then secured with combined proof on Bitcoin, Ethereum, Ethereum Classic, and Binance Chain, via Interchain. This means that every single transaction is secured by, and traceable to these networks. An attack on this system would require a simultaneous attack on all of the Interchained networks.
24 hours in 4 minutes (YouTube):
24 hours in 4 minutes
The demonstration was of a single business system, and any user is able to scale this further, by running multiple systems simultaneously. Our goals for the event were to demonstrate a consistent capacity greater than that of Visa over an extended time period.
Tooling to reproduce our demo is available here:
https://github.com/dragonchain/spirit-bomb

Source Code

Source code (for on & off-chain components as well tooling used for the PoC). The source code does not have to be shared publicly, but if Reddit decides to use a particular solution it will need to be shared with Reddit at some point.

Scaling

How it works & scales

Architectural Scaling

Dragonchain’s architecture attacks the scalability issue from multiple angles. Dragonchain is a hybrid blockchain platform, wherein every transaction is protected on a business node to the requirements of that business or purpose. A business node may be held completely private or may be exposed or replicated to any level of exposure desired.
Every node has its own blockchain and is independently scalable. Dragonchain established Context Based Verification as its consensus model. Every transaction is immediately usable on a trust basis, and in time is provable to an increasing level of decentralized consensus. A transaction will have a level of decentralization to independently owned and deployed Dragonchain nodes (~700 nodes) within seconds, and full decentralization to BTC and ETH within minutes or hours. Level 5 nodes (Interchain nodes) function to secure all transactions to public or otherwise external chains such as Bitcoin and Ethereum. These nodes scale the system by aggregating multiple blocks into a single Interchain transaction on a cadence. This timing is configurable based upon average fees for each respective chain. For detailed information about Dragonchain’s architecture, and Context Based Verification, please refer to the Dragonchain Architecture Document.

Economic Scaling

An interesting feature of Dragonchain’s network consensus is its economics and scarcity model. Since Dragon Net nodes (L2-L4) are independent staking nodes, deployment to cloud platforms would allow any of these nodes to scale to take on a large percentage of the verification work. This is great for scalability, but not good for the economy, because there is no scarcity, and pricing would develop a downward spiral and result in fewer verification nodes. For this reason, Dragonchain uses TIME as scarcity.
TIME is calculated as the number of Dragons held, multiplied by the number of days held. TIME influences the user’s access to features within the Dragonchain ecosystem. It takes into account both the Dragon balance and length of time each Dragon is held. TIME is staked by users against every verification node and dictates how much of the transaction fees are awarded to each participating node for every block.
TIME also dictates the transaction fee itself for the business node. TIME is staked against a business node to set a deterministic transaction fee level (see transaction fee table below in Cost section). This is very interesting in a discussion about scaling because it guarantees independence for business implementation. No matter how much traffic appears on the entire network, a business is guaranteed to not see an increased transaction fee rate.

Scaled Deployment

Dragonchain uses Docker and Kubernetes to allow the use of best practices traditional system scaling. Dragonchain offers managed nodes with an easy to use web based console interface. The user may also deploy a Dragonchain node within their own datacenter or favorite cloud platform. Users have deployed Dragonchain nodes on-prem on Amazon AWS, Google Cloud, MS Azure, and other hosting platforms around the world. Any executable code, anything you can write, can be written into a smart contract. This flexibility is what allows us to say that developers with no blockchain experience can use any code language to access the benefits of blockchain. Customers have used NodeJS, Python, Java, and even BASH shell script to write smart contracts on Dragonchain.
With Docker containers, we achieve better separation of concerns, faster deployment, higher reliability, and lower response times.
We chose Kubernetes for its self-healing features, ability to run multiple services on one server, and its large and thriving development community. It is resilient, scalable, and automated. OpenFaaS allows us to package smart contracts as Docker images for easy deployment.
Contract deployment time is now bounded only by the size of the Docker image being deployed but remains fast even for reasonably large images. We also take advantage of Docker’s flexibility and its ability to support any language that can run on x86 architecture. Any image, public or private, can be run as a smart contract using Dragonchain.

Flexibility in Scaling

Dragonchain’s architecture considers interoperability and integration as key features. From inception, we had a goal to increase adoption via integration with real business use cases and traditional systems.
We envision the ability for Reddit, in the future, to be able to integrate alternate content storage platforms or other financial services along with the token.
  • LBRY - To allow users to deploy content natively to LBRY
  • MakerDAO to allow users to lend small amounts backed by their Reddit community points.
  • STORJ/SIA to allow decentralized on chain storage of portions of content. These integrations or any other are relatively easy to integrate on Dragonchain with an Interchain implementation.

Cost

Cost estimates (on-chain and off-chain) For the purpose of this proposal, we assume that all transactions are on chain (posts, replies, and votes).
On the Dragonchain network, transaction costs are deterministic/predictable. By staking TIME on the business node (as described above) Reddit can reduce transaction costs to as low as $0.0000025 per transaction.
Dragonchain Fees Table

Getting Started

How to run it
Building on Dragonchain is simple and requires no blockchain experience. Spin up a business node (L1) in our managed environment (AWS), run it in your own cloud environment, or on-prem in your own datacenter. Clear documentation will walk you through the steps of spinning up your first Dragonchain Level 1 Business node.
Getting started is easy...
  1. Download Dragonchain’s dctl
  2. Input three commands into a terminal
  3. Build an image
  4. Run it
More information can be found in our Get started documents.

Architecture
Dragonchain is an open source hybrid platform. Through Dragon Net, each chain combines the power of a public blockchain (like Ethereum) with the privacy of a private blockchain.
Dragonchain organizes its network into five separate levels. A Level 1, or business node, is a totally private blockchain only accessible through the use of public/private keypairs. All business logic, including smart contracts, can be executed on this node directly and added to the chain.
After creating a block, the Level 1 business node broadcasts a version stripped of sensitive private data to Dragon Net. Three Level 2 Validating nodes validate the transaction based on guidelines determined from the business. A Level 3 Diversity node checks that the level 2 nodes are from a diverse array of locations. A Level 4 Notary node, hosted by a KYC partner, then signs the validation record received from the Level 3 node. The transaction hash is ledgered to the Level 5 public chain to take advantage of the hash power of massive public networks.
Dragon Net can be thought of as a “blockchain of blockchains”, where every level is a complete private blockchain. Because an L1 can send to multiple nodes on a single level, proof of existence is distributed among many places in the network. Eventually, proof of existence reaches level 5 and is published on a public network.

API Documentation

APIs (on chain & off)

SDK Source

Nobody’s Perfect

Known issues or tradeoffs
  • Dragonchain is open source and even though the platform is easy enough for developers to code in any language they are comfortable with, we do not have so large a developer community as Ethereum. We would like to see the Ethereum developer community (and any other communities) become familiar with our SDK’s, our solutions, and our platform, to unlock the full potential of our Ethereum Interchain. Long ago we decided to prioritize both Bitcoin and Ethereum Interchains. We envision an ecosystem that encompasses different projects to give developers the ability to take full advantage of all the opportunities blockchain offers to create decentralized solutions not only for Reddit but for all of our current platforms and systems. We believe that together we will take the adoption of blockchain further. We currently have additional Interchain with Ethereum Classic. We look forward to Interchain with other blockchains in the future. We invite all blockchains projects who believe in decentralization and security to Interchain with Dragonchain.
  • While we only have 700 nodes compared to 8,000 Ethereum and 10,000 Bitcoin nodes. We harness those 18,000 nodes to scale to extremely high levels of security. See Dragonchain metrics.
  • Some may consider the centralization of Dragonchain’s business nodes as an issue at first glance, however, the model is by design to protect business data. We do not consider this a drawback as these nodes can make any, none, or all data public. Depending upon the implementation, every subreddit could have control of its own business node, for potential business and enterprise offerings, bringing new alternative revenue streams to Reddit.

Costs and resources

Summary of cost & resource information for both on-chain & off-chain components used in the PoC, as well as cost & resource estimates for further scaling. If your PoC is not on mainnet, make note of any mainnet caveats (such as congestion issues).
Every transaction on the PoC system had a transaction fee of $0.0001 (one-hundredth of a cent USD). At 256MM transactions, the demo cost $25,600. With current operational fees, the same demonstration would cost $640 USD.
For the demonstration, to achieve throughput to mimic a worldwide payments network, we modeled several clients in AWS and 4-5 business nodes to handle the traffic. The business nodes were tuned to handle higher throughput by adjusting memory and machine footprint on AWS. This flexibility is valuable to implementing a system such as envisioned by Reddit. Given that Reddit’s daily traffic (posts, replies, and votes) is less than half that of our demo, we would expect that the entire Reddit system could be handled on 2-5 business nodes using right-sized containers on AWS or similar environments.
Verification was accomplished on the operational Dragon Net network with over 700 independently owned verification nodes running around the world at no cost to the business other than paid transaction fees.

Requirements

Scaling

This PoC should scale to the numbers below with minimal costs (both on & off-chain). There should also be a clear path to supporting hundreds of millions of users.
Over a 5 day period, your scaling PoC should be able to handle:
*100,000 point claims (minting & distributing points) *25,000 subscriptions *75,000 one-off points burning *100,000 transfers
During Dragonchain’s 24 hour demo, the above required numbers were reached within the first few minutes.
Reddit’s total activity is 9000% more than Ethereum’s total transaction level. Even if you do not include votes, it is still 700% more than Ethereum’s current volume. Dragonchain has demonstrated that it can handle 250 million transactions a day, and it’s architecture allows for multiple systems to work at that level simultaneously. In our PoC, we demonstrate double the full capacity of Reddit, and every transaction was proven all the way to Bitcoin and Ethereum.
Reddit Scaling on Ethereum

Decentralization

Solutions should not depend on any single third-party provider. We prefer solutions that do not depend on specific entities such as Reddit or another provider, and solutions with no single point of control or failure in off-chain components but recognize there are numerous trade-offs to consider
Dragonchain’s architecture calls for a hybrid approach. Private business nodes hold the sensitive data while the validation and verification of transactions for the business are decentralized within seconds and secured to public blockchains within 10 minutes to 2 hours. Nodes could potentially be controlled by owners of individual subreddits for more organic decentralization.
  • Billing is currently centralized - there is a path to federation and decentralization of a scaled billing solution.
  • Operational multi-cloud
  • Operational on-premises capabilities
  • Operational deployment to any datacenter
  • Over 700 independent Community Verification Nodes with proof of ownership
  • Operational Interchain (Interoperable to Bitcoin, Ethereum, and Ethereum Classic, open to more)

Usability Scaling solutions should have a simple end user experience.

Users shouldn't have to maintain any extra state/proofs, regularly monitor activity, keep track of extra keys, or sign anything other than their normal transactions
Dragonchain and its customers have demonstrated extraordinary usability as a feature in many applications, where users do not need to know that the system is backed by a live blockchain. Lyceum is one of these examples, where the progress of academy courses is being tracked, and successful completion of courses is rewarded with certificates on chain. Our @Save_The_Tweet bot is popular on Twitter. When used with one of the following hashtags - #please, #blockchain, #ThankYou, or #eternalize the tweet is saved through Eternal to multiple blockchains. A proof report is available for future reference. Other examples in use are DEN, our decentralized social media platform, and our console, where users can track their node rewards, view their TIME, and operate a business node.
Examples:

Transactions complete in a reasonable amount of time (seconds or minutes, not hours or days)
All transactions are immediately usable on chain by the system. A transaction begins the path to decentralization at the conclusion of a 5-second block when it gets distributed across 5 separate community run nodes. Full decentralization occurs within 10 minutes to 2 hours depending on which interchain (Bitcoin, Ethereum, or Ethereum Classic) the transaction hits first. Within approximately 2 hours, the combined hash power of all interchained blockchains secures the transaction.

Free to use for end users (no gas fees, or fixed/minimal fees that Reddit can pay on their behalf)
With transaction pricing as low as $0.0000025 per transaction, it may be considered reasonable for Reddit to cover transaction fees for users.
All of Reddit's Transactions on Blockchain (month)
Community points can be earned by users and distributed directly to their Reddit account in batch (as per Reddit minting plan), and allow users to withdraw rewards to their Ethereum wallet whenever they wish. Withdrawal fees can be paid by either user or Reddit. This model has been operating inside the Dragonchain system since 2018, and many security and financial compliance features can be optionally added. We feel that this capability greatly enhances user experience because it is seamless to a regular user without cryptocurrency experience, yet flexible to a tech savvy user. With regard to currency or token transactions, these would occur on the Reddit network, verified to BTC and ETH. These transactions would incur the $0.0000025 transaction fee. To estimate this fee we use the monthly active Reddit users statista with a 60% adoption rate and an estimated 10 transactions per month average resulting in an approximate $720 cost across the system. Reddit could feasibly incur all associated internal network charges (mining/minting, transfer, burn) as these are very low and controllable fees.
Reddit Internal Token Transaction Fees

Reddit Ethereum Token Transaction Fees
When we consider further the Ethereum fees that might be incurred, we have a few choices for a solution.
  1. Offload all Ethereum transaction fees (user withdrawals) to interested users as they wish to withdraw tokens for external use or sale.
  2. Cover Ethereum transaction fees by aggregating them on a timed schedule. Users would request withdrawal (from Reddit or individual subreddits), and they would be transacted on the Ethereum network every hour (or some other schedule).
  3. In a combination of the above, customers could cover aggregated fees.
  4. Integrate with alternate Ethereum roll up solutions or other proposals to aggregate minting and distribution transactions onto Ethereum.

Bonus Points

Users should be able to view their balances & transactions via a blockchain explorer-style interface
From interfaces for users who have no knowledge of blockchain technology to users who are well versed in blockchain terms such as those present in a typical block explorer, a system powered by Dragonchain has flexibility on how to provide balances and transaction data to users. Transactions can be made viewable in an Eternal Proof Report, which displays raw data along with TIME staking information and traceability all the way to Bitcoin, Ethereum, and every other Interchained network. The report shows fields such as transaction ID, timestamp, block ID, multiple verifications, and Interchain proof. See example here.
Node payouts within the Dragonchain console are listed in chronological order and can be further seen in either Dragons or USD. See example here.
In our social media platform, Dragon Den, users can see, in real-time, their NRG and MTR balances. See example here.
A new influencer app powered by Dragonchain, Raiinmaker, breaks down data into a user friendly interface that shows coin portfolio, redeemed rewards, and social scores per campaign. See example here.

Exiting is fast & simple
Withdrawing funds on Dragonchain’s console requires three clicks, however, withdrawal scenarios with more enhanced security features per Reddit’s discretion are obtainable.

Interoperability Compatibility with third party apps (wallets/contracts/etc) is necessary.
Proven interoperability at scale that surpasses the required specifications. Our entire platform consists of interoperable blockchains connected to each other and traditional systems. APIs are well documented. Third party permissions are possible with a simple smart contract without the end user being aware. No need to learn any specialized proprietary language. Any code base (not subsets) is usable within a Docker container. Interoperable with any blockchain or traditional APIs. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js. Please see our source code and API documentation.

Scaling solutions should be extensible and allow third parties to build on top of it Open source and extensible
APIs should be well documented and stable

Documentation should be clear and complete
For full documentation, explore our docs, SDK’s, Github repo’s, architecture documents, original Disney documentation, and other links or resources provided in this proposal.

Third-party permissionless integrations should be possible & straightforward Smart contracts are Docker based, can be written in any language, use full language (not subsets), and can therefore be integrated with any system including traditional system APIs. Simple is better. Learning an uncommon or proprietary language should not be necessary.
Advanced knowledge of mathematics, cryptography, or L2 scaling should not be required. Compatibility with common utilities & toolchains is expected.
Dragonchain business nodes and smart contracts leverage Docker to allow the use of literally any language or executable code. No proprietary language is necessary. We’ve witnessed relatively complex systems built by engineers with no blockchain or cryptocurrency experience. We’ve also demonstrated the creation of smart contracts within minutes built with BASH shell and Node.js.

Bonus

Bonus Points: Show us how it works. Do you have an idea for a cool new use case for Community Points? Build it!

TIME

Community points could be awarded to Reddit users based upon TIME too, whereas the longer someone is part of a subreddit, the more community points someone naturally gained, even if not actively commenting or sharing new posts. A daily login could be required for these community points to be credited. This grants awards to readers too and incentivizes readers to create an account on Reddit if they browse the website often. This concept could also be leveraged to provide some level of reputation based upon duration and consistency of contribution to a community subreddit.

Dragon Den

Dragonchain has already built a social media platform that harnesses community involvement. Dragon Den is a decentralized community built on the Dragonchain blockchain platform. Dragon Den is Dragonchain’s answer to fake news, trolling, and censorship. It incentivizes the creation and evaluation of quality content within communities. It could be described as being a shareholder of a subreddit or Reddit in its entirety. The more your subreddit is thriving, the more rewarding it will be. Den is currently in a public beta and in active development, though the real token economy is not live yet. There are different tokens for various purposes. Two tokens are Lair Ownership Rights (LOR) and Lair Ownership Tokens (LOT). LOT is a non-fungible token for ownership of a specific Lair. LOT will only be created and converted from LOR.
Energy (NRG) and Matter (MTR) work jointly. Your MTR determines how much NRG you receive in a 24-hour period. Providing quality content, or evaluating content will earn MTR.

Security. Users have full ownership & control of their points.
All community points awarded based upon any type of activity or gift, are secured and provable to all Interchain networks (currently BTC, ETH, ETC). Users are free to spend and withdraw their points as they please, depending on the features Reddit wants to bring into production.

Balances and transactions cannot be forged, manipulated, or blocked by Reddit or anyone else
Users can withdraw their balance to their ERC20 wallet, directly through Reddit. Reddit can cover the fees on their behalf, or the user covers this with a portion of their balance.

Users should own their points and be able to get on-chain ERC20 tokens without permission from anyone else
Through our console users can withdraw their ERC20 rewards. This can be achieved on Reddit too. Here is a walkthrough of our console, though this does not show the quick withdrawal functionality, a user can withdraw at any time. https://www.youtube.com/watch?v=aNlTMxnfVHw

Points should be recoverable to on-chain ERC20 tokens even if all third-parties involved go offline
If necessary, signed transactions from the Reddit system (e.g. Reddit + Subreddit) can be sent to the Ethereum smart contract for minting.

A public, third-party review attesting to the soundness of the design should be available
To our knowledge, at least two large corporations, including a top 3 accounting firm, have conducted positive reviews. These reviews have never been made public, as Dragonchain did not pay or contract for these studies to be released.

Bonus points
Public, third-party implementation review available or in progress
See above

Compatibility with HSMs & hardware wallets
For the purpose of this proposal, all tokenization would be on the Ethereum network using standard token contracts and as such, would be able to leverage all hardware wallet and Ethereum ecosystem services.

Other Considerations

Minting/distributing tokens is not performed by Reddit directly
This operation can be automated by smart contract on Ethereum. Subreddits can if desired have a role to play.

One off point burning, as well as recurring, non-interactive point burning (for subreddit memberships) should be possible and scalable
This is possible and scalable with interaction between Dragonchain Reddit system and Ethereum token contract(s).

Fully open-source solutions are strongly preferred
Dragonchain is fully open source (see section on Disney release after conclusion).

Conclusion

Whether it is today, or in the future, we would like to work together to bring secure flexibility to the highest standards. It is our hope to be considered by Ethereum, Reddit, and other integrative solutions so we may further discuss the possibilities of implementation. In our public demonstration, 256 million transactions were handled in our operational network on chain in 24 hours, for the low cost of $25K, which if run today would cost $625. Dragonchain’s interoperable foundation provides the atmosphere necessary to implement a frictionless community points system. Thank you for your consideration of our proposal. We look forward to working with the community to make something great!

Disney Releases Blockchain Platform as Open Source

The team at Disney created the Disney Private Blockchain Platform. The system was a hybrid interoperable blockchain platform for ledgering and smart contract development geared toward solving problems with blockchain adoption and usability. All objective evaluation would consider the team’s output a success. We released a list of use cases that we explored in some capacity at Disney, and our input on blockchain standardization as part of our participation in the W3C Blockchain Community Group.
https://lists.w3.org/Archives/Public/public-blockchain/2016May/0052.html

Open Source

In 2016, Roets proposed to release the platform as open source to spread the technology outside of Disney, as others within the W3C group were interested in the solutions that had been created inside of Disney.
Following a long process, step by step, the team met requirements for release. Among the requirements, the team had to:
  • Obtain VP support and approval for the release
  • Verify ownership of the software to be released
  • Verify that no proprietary content would be released
  • Convince the organization that there was a value to the open source community
  • Convince the organization that there was a value to Disney
  • Offer the plan for ongoing maintenance of the project outside of Disney
  • Itemize competing projects
  • Verify no conflict of interest
  • Preferred license
  • Change the project name to not use the name Disney, any Disney character, or any other associated IP - proposed Dragonchain - approved
  • Obtain legal approval
  • Approval from corporate, parks, and other business units
  • Approval from multiple Disney patent groups Copyright holder defined by Disney (Disney Connected and Advanced Technologies)
  • Trademark searches conducted for the selected name Dragonchain
  • Obtain IT security approval
  • Manual review of OSS components conducted
  • OWASP Dependency and Vulnerability Check Conducted
  • Obtain technical (software) approval
  • Offer management, process, and financial plans for the maintenance of the project.
  • Meet list of items to be addressed before release
  • Remove all Disney project references and scripts
  • Create a public distribution list for email communications
  • Remove Roets’ direct and internal contact information
  • Create public Slack channel and move from Disney slack channels
  • Create proper labels for issue tracking
  • Rename internal private Github repository
  • Add informative description to Github page
  • Expand README.md with more specific information
  • Add information beyond current “Blockchains are Magic”
  • Add getting started sections and info on cloning/forking the project
  • Add installation details
  • Add uninstall process
  • Add unit, functional, and integration test information
  • Detail how to contribute and get involved
  • Describe the git workflow that the project will use
  • Move to public, non-Disney git repository (Github or Bitbucket)
  • Obtain Disney Open Source Committee approval for release
On top of meeting the above criteria, as part of the process, the maintainer of the project had to receive the codebase on their own personal email and create accounts for maintenance (e.g. Github) with non-Disney accounts. Given the fact that the project spanned multiple business units, Roets was individually responsible for its ongoing maintenance. Because of this, he proposed in the open source application to create a non-profit organization to hold the IP and maintain the project. This was approved by Disney.
The Disney Open Source Committee approved the application known as OSSRELEASE-10, and the code was released on October 2, 2016. Disney decided to not issue a press release.
Original OSSRELASE-10 document

Dragonchain Foundation

The Dragonchain Foundation was created on January 17, 2017. https://den.social/l/Dragonchain/24130078352e485d96d2125082151cf0/dragonchain-and-disney/
submitted by j0j0r0 to ethereum [link] [comments]

Fun with Dynamic DNS services and bitcoind

I realize that bitcoind has this capability built in, but thought it might be fun to configure it manually. As some background, most people look at their network and they have some address like 192.168.1.105. That is a private network address. Sites like WhatIsMyIpAddress.com will tell you what your EXTERNAL IP address is. When your running a bitcoin node, people will connect to your external IP.
Problem is... your ISP may cycle that IP address every week or so. bitcoind has a nice feature baked in called discover which will do the work of guessing your external IP as it changes. But if you are doing anything where you need to expose your RPC API externally (*danger*) then it would be nice to have some FQDN to go after to do the IP translation.
Originally, I had always solved this by exposing my node as an onion node. Since onion nodes traverse NATs and firewalls fairly effortlessly this was an easy option. But previously I had played around with Dynamic DNS service. I've used noip.com but there are likely dozens of services out there that will get the job done.
Once you have enabled a NoIP hostname, you can name it in your bitcoin.conf using the externalip=coolbtcnode.ddns.net. Then, assuming you setup all the RPC auth and port forwarding, you could access your node via RPC at coolbtcnode.ddns.net
As I said... it's a redundancy, since discover=1 does most of this for you, but still thought someone might enjoy the tip.
References:
submitted by brianddk to Bitcoin [link] [comments]

Everything You Need To Know About CryptoView

Everything You Need To Know About CryptoView

CryptoView Is An All-In-One Solution For Crypto Trading And Portfolio Management
The wide range of crypto exchanges and platforms is still one of the biggest setbacks for novice and advanced traders to join the crypto sector. The steep learning curve of crypto trading further stops beginners from taking advantage of the booming industry.
Despite the obstacles along the way, some companies provide working solutions for placing orders and managing portfolios, which significantly eases the process. CryptoView is one of those providers, who set the bar high. They aim to become the best crypto portfolio tracker for all traders, regardless of their expertise or trading knowledge.
In its core, CryptoView is a crypto portfolio management platform with support for a multitude of the world’s largest crypto exchanges to date. The cryptocurrency tool is suitable for enthusiasts with several exchange accounts, as well as seasoned crypto traders and fund managers. CryptoView users can switch between trading pairs and exchanges with a few clicks in a single browser tab, thus giving them the ability to track and manage their portfolios via one secure interface.
https://preview.redd.it/dmir56s4nqj51.jpg?width=1919&format=pjpg&auto=webp&s=1d575edb5dad074035ee0a39985c3432b0bc21d9
The team behind CryptoView designed the platform as an all-in-one integrated interface that combines cryptocurrency portfolio management, trading, market data, news, calendar, and other useful trading tools, under one secured account. CryptoView’s platform utilizes API connections to the world’s largest exchanges and grants instant data synchronization between a vast range of wallets and portfolios. The crypto trading platform also utilizes a wide range of professional features like multi-charting, advanced trading orders, portfolio sharing, financial reports, and various performance indicators.

Another important feature of the platform is portfolio management. Users can view, manage, and share current portfolios with colleagues and friends. The portfolio management option gives users access to a detailed list of their assets, as well as various performance indicators to track the profitability of a given portfolio. Users can also automate portfolio reports by receiving them directly via email.
To have full control over investments and minimize possible losses, CryptoView integrates a more professional set of smart features like order depth indicator and access to “stop” and “stop-limit” orders, which minimize the risks of a sudden price drop when trading cryptocurrencies.
CryptoView supports sub-balance accounts such as Margin, Lending, Swap, and Futures, which further enhance the trading experience and give traders full control over their trading. Furthermore, the platform enables the use of manual balance entries, which are useful when connecting the trading platform with offline cryptocurrency storage, like a cold wallet.
Monitor your assets with the best crypto portfolio tracker, powered by TradingView®
In order to get the best comprehensive picture of portfolio asset movements, CryptoView incorporated the crypto trading charts of the leader in real-time price data, TradingView. The charts are intuitive and easy to understand for both novice and advanced traders and portfolio managers. Users have access to 85 technical indicators and 75 drawing tools to simultaneously monitor the real-time market data from all supported crypto exchanges. A multi-screen setup for easy switching between screens and trading pairs is supported as well.
https://preview.redd.it/pv42l9ednqj51.jpg?width=1916&format=pjpg&auto=webp&s=73916d09ce0c942a10a049c31f97b3ccd80b3989
The range of features also includes a customizable news aggregation mechanism, giving users the ability to select the best cryptocurrency news portals, an integrated crypto calendar for tracking all of the major events from the crypto sector, as well as in-browser, SMS and email notifications about price movements.
Is CryptoView safe?
The team at CryptoView takes security to extremes by offering clients enterprise-grade security. All platform actions executed by users are going through a cloud-based architecture with an SSL-encrypted connection. Inside the platform, all data is secured with strong API encryption, DoS protection, as well as two-factor authentication. In the event of unauthorized access, CryptoView has the option to freeze accounts and provide safety for users’ funds.
CryptoView does not store any funds on its platform, further increasing the provided security levels and enhancing customer`s experience with the platform
How to use CryptoView?
The signup on the platform takes just a few clicks, and all users receive a 30-day free trial with all of CryptoView’s functionalities. To register, users have to fill a registration form and verify their email, 2fA is optional. After account verification, users have to connect their crypto exchange account to be able to track portfolio balances and make all desired customizations.
The 30-day free pass lets users familiarize themselves with the plentiful of functionalities and decide if they are delighted with the features provided by the cryptocurrency portfolio tracker. The prices for using the platform after the one-month trial are lower than the competitors, starting at just $19 for a single one month. If users pay for a whole year, they get a 30% discount on their purchase, and will pay only $13 per month.
Trade and earn money with CryptoView’s affiliate and referral programs
CryptoView gives users the chance to earn 2 free months by referring to a friend or a colleague that decides to become a paid user. Crypto bloggers or influencers can utilize CryptoView’s affiliate program and earn $20 in Bitcoin for every subscriber that comes through their affiliate link. The company provides marketing materials and a 90-day cookie to increase the chance of monetizing their audience.
In the end – beginner friendly? Yes, indeed
CryptoView takes cryptocurrency trading and portfolio management and translates it into an easy-to-comprehend platform, suitable for both novice and advanced users. With the help of a massive range of crypto tools and state-of-the-art software, CryptoView flattens the adoption curve, which still drives users away from the exciting world of cryptocurrencies.
submitted by Crypto_Browser to CryptoBrowser_EN [link] [comments]

Update TKEYSPACE 1.3.0 on Android

Update TKEYSPACE 1.3.0 on Android

https://preview.redd.it/6w93e0afttx41.png?width=1400&format=png&auto=webp&s=c00989612ec2d52eb522405e6b6a98bf875e08bb
Version 1.3.0 is a powerful update to TkeySpace that our team has been carefully preparing. since version 1.2.0, we have been laying the foundation for implementing new features that are already available in the current version.
Who cares about the security and privacy of their assets is an update for you.
TkeySpace — was designed to give You full control over your digital assets while maintaining an exceptional level of security, which is why there is no personal data in the wallet: phone number, the email address that could be compromised by hackers — no identity checks and other hassles, just securely save the backup phrase consisting of 12 words.

Briefly about the TkeySpace 1.3.0 update :

  • Code optimization and switching to AndroidX;
  • New section-Privacy;
  • Built-in TOR;
  • Selecting the privacy mode;
  • Selecting the recovery method for each currency;
  • Choosing the address format for Litecoin;
  • Enhanced validation of transactions and blocks in the network;
  • Disk space optimization;
  • Accelerated syncing;
  • Checking “double spending”;
  • The bloom filter to check for nodes;
  • Updating the Binance and Ethereum libraries;
  • A function to hide the balance;
  • Advanced currency charts;
  • Access to charts without authentication;
  • News section;
  • Browser for Tkeycoin;
  • Independent Commission entry for Bitcoin;
  • New digital currencies;
  • Digital currency exchange tab.

Code optimization and switching to AndroidX

A lot of work has been done on optimizing the code to speed up the application, improving the logic, synchronization speed, calculating the hash of cryptocurrencies, and successfully switching to AndroidX.

https://preview.redd.it/h3go5tzgttx41.png?width=1100&format=png&auto=webp&s=bf311efc73e3577c80f06a21d6b9317bb93ae989

New section: Privacy

  • Enable Tor;
  • Blockchain transaction (the selection of the privacy mode);
  • Blockchain recovery (choosing a recovery method);
https://preview.redd.it/iydfwuhittx41.png?width=1080&format=png&auto=webp&s=2ce7c489d893a2ab6b9d6fede57d8b94404edcfb

TOR

Starting with the current update, the TkeySpace wallet can communicate via the TOR network, includes new privacy algorithms, and supports 59 different currencies.

https://i.redd.it/kn5waeskttx41.gif
Tor is a powerful privacy feature for those who own large assets or live in places where the Internet is heavily censored.
Tor technology provides protection against traffic analysis mechanisms that compromise not only Internet privacy, but also the confidentiality of trade secrets, business contacts, and communications in General.
When you enable TOR settings, all outgoing traffic from the wallet will be encrypted and routed through an anonymous network of servers, periodically forming a chain through the Tor network, which uses multi-level encryption, effectively hiding any information about the sender: location, IP address, and other data.
This means that if your provider blocks the connection, you can rest easy — after all, by running this function, you will get an encrypted connection to the network without restrictions.

https://preview.redd.it/w9y3ax4mttx41.png?width=960&format=png&auto=webp&s=972e375fc26d479e8b8d2999f7659ec332e2af55
In TOR mode, the wallet may work noticeably slower and in some cases, there may be problems with the network, due to encryption, some blockchain browsers may temporarily not work. However, TOR encryption is very important when Internet providers completely block traffic and switching to this mode, you get complete freedom and no blocks for transactions.

Confidentiality of transactions (the Blockchain transaction)

The wallet can change the model of a standard transaction, mixing inputs and outputs, making it difficult to identify certain cryptocurrencies. In the current update, you can select one of several modes for the transaction privacy level: deterministic lexicographic sorting or shuffle mode.

Mode: Lexicographic indexing

Implemented deterministic lexicographic sorting using hashes of previous transactions and output indexes for sorting transaction input data, as well as values and scriptPubKeys for sorting transaction output data;
We understand that information must remain confidential not only in the interests of consumers but also in higher orders, financial systems must be kept secret to prevent fraud. One way to address these privacy shortcomings is to randomize the order of inputs and outputs.
Lexicographic ordering is a comparison algorithm used to sort two sets based on their Cartesian order within their common superset. Lexicographic order is also often referred to as alphabetical order or dictionary order. The hashes of previous transactions (in reverse byte order) are sorted in ascending order, lexicographically.
In the case of two matching transaction hashes, the corresponding previous output indexes will be compared by their integer value in ascending order. If the previous output indexes match, the input data is considered equal.

Shuffle Mode: mixing (random indexing)

To learn more about how “shuffle mode” works, we will first analyze the mechanisms using the example of a classic transaction. Current balance Of your wallet: 100 TKEY, coins are stored at different addresses:
x1. Address-contains 10 TKEY. x2. Address-contains 20 TKEY. x3. Address-contains 30 TKEY. x4. Address-contains 15 TKEY. x5. Address-contains 25 TKEY.
Addresses in the blockchain are identifiers that you use to send cryptocurrency to another person or to receive digital currency.
In a classic transaction, if you need to send, for example, 19 TKEY — 100 TKEY will be sent to the network for “melting” coins, 19 TKEY will be sent to the Recipient, and ~80.9 TKEY will return to the newly generated address for “change” in your wallet.

https://preview.redd.it/x595qwdottx41.png?width=806&format=png&auto=webp&s=d9c2ae5620a3410ed83f7e16c018165c8ab35844
In the blockchain explorer, you will see the transaction amount in the amount of 100 TKEY, where 80.99999679 TKEY is your change, 19 TKEY is the amount you sent and 0.00000321 is the transaction fee. Thus, in the blockchain search engine, most of your balance is shown in the transaction.

How does the shuffle mode work?

Let’s look at a similar example: you have 100 TKEY on your balance, and you need to send 19 TKEY.
x1. Address-contains 10 TKEY. x2. Address-contains 20 TKEY. x3. Address-contains 30 TKEY. x4. Address-contains 15 TKEY. x5. Address-contains 25 TKEY.
You send 19 TKEY, the system analyzes all your addresses and balances on them and selects the most suitable ones for the transaction. To send 19 TKEY, the miners will be given coins with x2. Addresses, for a total of 20 TKEY. Of these, 19 TKEY will be sent to the recipient, and 0.99999679 TKEY will be returned to Your new address as change minus the transaction fee.

https://preview.redd.it/doxmqffqttx41.png?width=1400&format=png&auto=webp&s=5c99ec41363fe50cd651dc0acab05e175416006a
In the blockchain explorer, you will see the transaction amount in the amount of 20 TKEY, where 0.99999679 TKEY is Your change, 19 TKEY is the amount you sent and 0.00000321 is the transaction fee.
The shuffle mode has a cumulative effect. with each new transaction, delivery Addresses will be created and the selection of debit addresses/s that are most suitable for the transaction will change. Thus, if you store 1,000,000 TKEY in your wallet and want to send 1 TKEY to the recipient, the transaction amount will not display most of your balance but will select 1 or more addresses for the transaction.

Selecting the recovery method for each digital currency (Blockchain restore)

Now you can choose the recovery method for each currency: API + Blockchain or blockchain.
Note: This is not a syncing process, but rather the choice of a recovery method for your wallet. Syncing takes place with the blockchain — regardless of the method you choose.
https://preview.redd.it/gxsssuxrttx41.png?width=1080&format=png&auto=webp&s=cd9fe383618dda0e990e86485652ff95652a8481

What are the differences between recovery methods?

API + Blockchain

In order not to load the entire history of the blockchain, i.e. block and transaction headers, the API helps you quickly get point information about previous transactions. For example, If your transactions are located in block 67325 and block 71775, the API will indicate to the node the necessary points for restoring Your balance, which will speed up the “recovery” process.
As soon as the information is received, communication with the peers takes place and synchronization begins from the control point, then from this moment, all subsequent block loading is carried out through the blockchain. This method allows you to quickly restore Your existing wallet.
‘’+’’ Speed.
‘’-’’ The API server may fail.

Blockchain

This method loads all block headers (block headers + Merkle) starting from the BIP44 checkpoint and manually validates transactions.
‘’+’’ It always works and is decentralized. ‘’-’’ Loading the entire blockchain may take a long time.

Why do I need to switch the recovery method?

If when creating a wallet or restoring it, a notification (!) lights up in red near the selected cryptocurrency, then most likely the API has failed, so go to SettingsSecurity CenterPrivacyBlockchain Restore — switch to Blockchain. Syncing will be successful.

Selecting the address format

You can choose the address format not only for Bitcoin but also for Litecoin. Legacy, SegWit, Native SegWit. Go to SettingsManage WalletsAddress Format.

https://preview.redd.it/nqj0nwutttx41.png?width=1080&format=png&auto=webp&s=fc04b8ee8339ab27d3203ff551013cda7aa9e8db

Working at the code level

Enhanced validation of transactions and blocks in the network

Due to the increased complexity in the Tkeycoin network, we have implemented enhanced validation of the tkeycoin consensus algorithm, and this algorithm is also available for other cryptocurrencies.

What is the advantage of the enhanced validation algorithm for the user

First, the name itself speaks for itself — it increases the security of the network, and second, by implementing the function — we have accelerated the work of the TkeySpace blockchain node, the application consumes even fewer resources than before.
High complexity is converted to 3 bytes, which ensures fast code processing and the least resource consumption on your device.

Synchronization

The synchronization process has been upgraded. Node addresses are added to the local storage, and instant synchronization with nodes occurs when you log in again.

Checking for double-spending

TkeySpace eliminates “double-spending” in blockchains, which is very valuable in the Bitcoin and Litecoin networks.
For example, using another application, you may be sent a fake transaction, and the funds will eventually disappear from the network and your wallet because this feature is almost absent in most applications.
Using TkeySpace — you are 100% sure that your funds are safe and protected from fraudulent transactions in the form of “fake” transactions.

The bloom filter to check for nodes

All nodes are checked through the bloom filter. This allows you to exclude fraudulent nodes that try to connect to the network as real nodes of a particular blockchain.
In practice, this verification is not available in applications, Tkeycoin — decided to follow a new trend and change the stereotypes, so new features such as node verification using the bloom filter and double-spending verification are a kind of innovation in applications that work with cryptocurrencies.

Updating the Binance and Ethereum libraries

Updated Binance and Ethereum libraries for interaction with the TOR network.

Interface

Function — to hide the balance

This function allows you to hide the entire balance from the main screen.

Advanced currency charts and charts without authentication

Detailed market statistics are available, including volumes, both for 1 day and several years. Select the period of interest: 1 day, 7 days, 1 month, 3 months, 6 months, 1 year, 2 years.
In version 1.3.0, you can access charts without authentication. You can monitor the cryptocurrency exchange rate without even logging in to the app. If you have a pin code for logging in, when you open the app, swipe to the left and you will see a list of currencies.

https://preview.redd.it/f3thqv1wttx41.png?width=1080&format=png&auto=webp&s=1906307f7ad1fd6db47bf270ce7c57185267b1a3

News

In the market data section — in the tkeyspace added a section with current news of the cryptocurrency market.

https://preview.redd.it/lz1e7ynxttx41.png?width=1080&format=png&auto=webp&s=b6f1858d8752cfc6187df5d7b8a2ce25813e2366

Blockchain Explorer for Tkeycoin

Transaction verification for Tkeycoin is now available directly in the app.

Independent Commission entry for Bitcoin

Taking into account the large volume of the Bitcoin network, we have implemented independent Commission entry — you can specify any Commission amount.
For other currencies, smart Commission calculation is enabled based on data from the network. The network independently regulates the most profitable Commission for the sender.

New digital currencies

The TkeySpace wallet supports +59 cryptocurrencies and tokens.

Cryptocurrencies

Tkeycoin (TKEY), Bitcoin (BTC), Litecoin (LTC), Ethereum (ETH), Bitcoin Cash (BCH), DASH, Binance (BNB), EOS.

Stablecoins

TrueUSD (TUSD), Tether USD (USDT), USD Coin (USDC), Gemini Dollar (GUSD), STASIS EURO (EURS), Digix Gold Token (DGX), Paxos Standard (PAX), PAX Gold (PAXG), Binance USD (BUSD), EOSDT, Prospectors Gold (PGL).

ERC-20, BEP2, and EOS tokens

Newdex (NDX), DigixDAO ERC-20 (DGD), Chainlink ERC-20 (LINK), Decentraland ERC-20 (MANA), EnjinCoin ERC-20 (ENJ), the Native Utility (NUT), 0x Protocol ERC-20 (ZRX), Aelf ERC-20 (ELF), Dawn DAO ERC-20 (AURA), Cashaaa BEP2 (CAS), Bancor ERC-20 (BNT), the Basic Attention Token ERC-20 (BAT), Golem ERC-20 (GNT), Mithril ERC-20 (MITH), MEETONE, NEXO ERC-20, Holo ERC-20 (HOT), Huobi Token ERC-20 (HT), IDEX ERC-20, IDEX Membership ERC-20 (IDXM), Bitcoin BEP2 (BTCB), Waltonchain ERC-20 (WTC), KuCoin Shares ERC-20 (KCS), Kyber Network Crystal ERC-20 (KNC), Loom Network ERC-20 (LOOM), Ripple (XRP), Everipedia (IQ), Loopring ERC-20 (LRC), Maker ERC-20 (MKR), the Status of the ERC-20 (SNT), Ankr Network BEP2 (ANKR), OmiseGO ERC-20 (OMG), ^ american English ERC-20 (^american English), Polymath ERC-20 (POLY), Populous ERC-20 (PPT), Pundi X ERC-20 (NPXS), Parser ERC-20 (REP), Revain ERC-20 (R), Binance ERC20 (BNB-ERC20), Gifto BEP2 (GTO).

Exchange of cryptocurrency

The “Limitless Crypto Exchange” tab is available for a quick transition to an unlimited exchange in 200 digital currencies — 10,000 currency pairs.

How do I update TkeySpace to version 1.3.0?

  1. Go to Google Play on your device — My apps and games — find TkeySpace in the list of apps — click Update.
  2. Go to Google Play on your device-write TkeySpace in the search — click on the app icon — Update.
After the update, you will need to restore your wallet.
submitted by tkeycoin to Tkeycoin_Official [link] [comments]

FlowCards: A Declarative Framework for Development of Ergo dApps

FlowCards: A Declarative Framework for Development of Ergo dApps
Introduction
ErgoScript is the smart contract language used by the Ergo blockchain. While it has concise syntax adopted from Scala/Kotlin, it still may seem confusing at first because conceptually ErgoScript is quite different compared to conventional languages which we all know and love. This is because Ergo is a UTXO based blockchain, whereas smart contracts are traditionally associated with account based systems like Ethereum. However, Ergo's transaction model has many advantages over the account based model and with the right approach it can even be significantly easier to develop Ergo contracts than to write and debug Solidity code.
Below we will cover the key aspects of the Ergo contract model which makes it different:
Paradigm
The account model of Ethereum is imperative. This means that the typical task of sending coins from Alice to Bob requires changing the balances in storage as a series of operations. Ergo's UTXO based programming model on the other hand is declarative. ErgoScript contracts specify conditions for a transaction to be accepted by the blockchain (not changes to be made in the storage state as result of the contract execution).
Scalability
In the account model of Ethereum both storage changes and validity checks are performed on-chain during code execution. In contrast, Ergo transactions are created off-chain and only validation checks are performed on-chain thus reducing the amount of operations performed by every node on the network. In addition, due to immutability of the transaction graph, various optimization strategies are possible to improve throughput of transactions per second in the network. Light verifying nodes are also possible thus further facilitating scalability and accessibility of the network.
Shared state
The account-based model is reliant on shared mutable state which is known to lead to complex semantics (and subtle million dollar bugs) in the context of concurrent/ distributed computation. Ergo's model is based on an immutable graph of transactions. This approach, inherited from Bitcoin, plays well with the concurrent and distributed nature of blockchains and facilitates light trustless clients.
Expressive Power
Ethereum advocated execution of a turing-complete language on the blockchain. It theoretically promised unlimited potential, however in practice severe limitations came to light from excessive blockchain bloat, subtle multi-million dollar bugs, gas costs which limit contract complexity, and other such problems. Ergo on the flip side extends UTXO to enable turing-completeness while limiting the complexity of the ErgoScript language itself. The same expressive power is achieved in a different and more semantically sound way.
With the all of the above points, it should be clear that there are a lot of benefits to the model Ergo is using. In the rest of this article I will introduce you to the concept of FlowCards - a dApp developer component which allows for designing complex Ergo contracts in a declarative and visual way.
From Imperative to Declarative
In the imperative programming model of Ethereum a transaction is a sequence of operations executed by the Ethereum VM. The following Solidity function implements a transfer of tokens from sender to receiver . The transaction starts when sender calls this function on an instance of a contract and ends when the function returns.
// Sends an amount of existing coins from any caller to an address function send(address receiver, uint amount) public { require(amount <= balances[msg.sender], "Insufficient balance."); balances[msg.sender] -= amount; balances[receiver] += amount; emit Sent(msg.sender, receiver, amount); } 
The function first checks the pre-conditions, then updates the storage (i.e. balances) and finally publishes the post-condition as the Sent event. The gas which is consumed by the transaction is sent to the miner as a reward for executing this transaction.
Unlike Ethereum, a transaction in Ergo is a data structure holding a list of input coins which it spends and a list of output coins which it creates preserving the total balances of ERGs and tokens (in which Ergo is similar to Bitcoin).
Turning back to the example above, since Ergo natively supports tokens, therefore for this specific example of sending tokens we don't need to write any code in ErgoScript. Instead we need to create the ‘send’ transaction shown in the following figure, which describes the same token transfer but declaratively.
https://preview.redd.it/id5kjdgn9tv41.png?width=1348&format=png&auto=webp&s=31b937d7ad0af4afe94f4d023e8c90c97c8aed2e
The picture visually describes the following steps, which the network user needs to perform:
  1. Select unspent sender's boxes, containing in total tB >= amount of tokens and B >= txFee + minErg ERGs.
  2. Create an output target box which is protected by the receiver public key with minErg ERGs and amount of T tokens.
  3. Create one fee output protected by the minerFee contract with txFee ERGs.
  4. Create one change output protected by the sender public key, containing B - minErg - txFee ERGs and tB - amount of T tokens.
  5. Create a new transaction, sign it using the sender's secret key and send to the Ergo network.
What is important to understand here is that all of these steps are preformed off-chain (for example using Appkit Transaction API) by the user's application. Ergo network nodes don't need to repeat this transaction creation process, they only need to validate the already formed transaction. ErgoScript contracts are stored in the inputs of the transaction and check spending conditions. The node executes the contracts on-chain when the transaction is validated. The transaction is valid if all of the conditions are satisfied.
Thus, in Ethereum when we “send amount from sender to recipient” we are literally editing balances and updating the storage with a concrete set of commands. This happens on-chain and thus a new transaction is also created on-chain as the result of this process.
In Ergo (as in Bitcoin) transactions are created off-chain and the network nodes only verify them. The effects of the transaction on the blockchain state is that input coins (or Boxes in Ergo's parlance) are removed and output boxes are added to the UTXO set.
In the example above we don't use an ErgoScript contract but instead assume a signature check is used as the spending pre-condition. However in more complex application scenarios we of course need to use ErgoScript which is what we are going to discuss next.
From Changing State to Checking Context
In the send function example we first checked the pre-condition (require(amount <= balances[msg.sender],...) ) and then changed the state (i.e. update balances balances[msg.sender] -= amount ). This is typical in Ethereum transactions. Before we change anything we need to check if it is valid to do so.
In Ergo, as we discussed previously, the state (i.e. UTXO set of boxes) is changed implicitly when a valid transaction is included in a block. Thus we only need to check the pre-conditions before the transaction can be added to the block. This is what ErgoScript contracts do.
It is not possible to “change the state” in ErgoScript because it is a language to check pre-conditions for spending coins. ErgoScript is a purely functional language without side effects that operates on immutable data values. This means all the inputs, outputs and other transaction parameters available in a script are immutable. This, among other things, makes ErgoScript a very simple language that is easy to learn and safe to use. Similar to Bitcoin, each input box contains a script, which should return the true value in order to 1) allow spending of the box (i.e. removing from the UTXO set) and 2) adding the transaction to the block.
If we are being pedantic, it is therefore incorrect (strictly speaking) to think of ErgoScript as the language of Ergo contracts, because it is the language of propositions (logical predicates, formulas, etc.) which protect boxes from “illegal” spending. Unlike Bitcoin, in Ergo the whole transaction and a part of the current blockchain context is available to every script. Therefore each script may check which outputs are created by the transaction, their ERG and token amounts (we will use this capability in our example DEX contracts), current block number etc.
In ErgoScript you define the conditions of whether changes (i.e. coin spending) are allowed to happen in a given context. This is in contrast to programming the changes imperatively in the code of a contract.
While Ergo's transaction model unlocks a whole range of applications like (DEX, DeFi Apps, LETS, etc), designing contracts as pre-conditions for coin spending (or guarding scripts) directly is not intuitive. In the next sections we will consider a useful graphical notation to design contracts declaratively using FlowCard Diagrams, which is a visual representation of executable components (FlowCards).
FlowCards aim to radically simplify dApp development on the Ergo platform by providing a high-level declarative language, execution runtime, storage format and a graphical notation.
We will start with a high level of diagrams and go down to FlowCard specification.
FlowCard Diagrams
The idea behind FlowCard diagrams is based on the following observations: 1) An Ergo box is immutable and can only be spent in the transaction which uses it as an input. 2) We therefore can draw a flow of boxes through transactions, so that boxes flowing in to the transaction are spent and those flowing out are created and added to the UTXO. 3) A transaction from this perspective is simply a transformer of old boxes to the new ones preserving the balances of ERGs and tokens involved.
The following figure shows the main elements of the Ergo transaction we've already seen previously (now under the name of FlowCard Diagram).
https://preview.redd.it/9kcxl11o9tv41.png?width=1304&format=png&auto=webp&s=378a7f50769292ca94de35ff597dc1a44af56d14
There is a strictly defined meaning (semantics) behind every element of the diagram, so that the diagram is a visual representation (or a view) of the underlying executable component (called FlowCard).
The FlowCard can be used as a reusable component of an Ergo dApp to create and initiate the transaction on the Ergo blockchain. We will discuss this in the coming sections.
Now let's look at the individual pieces of the FlowCard diagram one by one.
  1. Name and Parameters
Each flow card is given a name and a list of typed parameters. This is similar to a template with parameters. In the above figure we can see the Send flow card which has five parameters. The parameters are used in the specification.
  1. Contract Wallet
This is a key element of the flow card. Every box has a guarding script. Often it is the script that checks a signature against a public key. This script is trivial in ErgoScript and is defined like the def pk(pubkey: Address) = { pubkey } template where pubkey is a parameter of the type Address . In the figure, the script template is applied to the parameter pk(sender) and thus a concrete wallet contract is obtained. Therefore pk(sender) and pk(receiver) yield different scripts and represent different wallets on the diagram, even though they use the same template.
Contract Wallet contains a set of all UTXO boxes which have a given script derived from the given script template using flow card parameters. For example, in the figure, the template is pk and parameter pubkey is substituted with the `sender’ flow card parameter.
  1. Contract
Even though a contract is a property of a box, on the diagram we group the boxes by their contracts, therefore it looks like the boxes belong to the contracts, rather than the contracts belong to the boxes. In the example, we have three instantiated contracts pk(sender) , pk(receiver) and minerFee . Note, that pk(sender) is the instantiation of the pk template with the concrete parameter sender and minerFee is the instantiation of the pre-defined contract which protects the miner reward boxes.
  1. Box name
In the diagram we can give each box a name. Besides readability of the diagram, we also use the name as a synonym of a more complex indexed access to the box in the contract. For example, change is the name of the box, which can also be used in the ErgoScript conditions instead of OUTPUTS(2) . We also use box names to associate spending conditions with the boxes.
  1. Boxes in the wallet
In the diagram, we show boxes (darker rectangles) as belonging to the contract wallets (lighter rectangles). Each such box rectangle is connected with a grey transaction rectangle by either orange or green arrows or both. An output box (with an incoming green arrow) may include many lines of text where each line specifies a condition which should be checked as part of the transaction. The first line specifies the condition on the amount of ERG which should be placed in the box. Other lines may take one of the following forms:
  1. amount: TOKEN - the box should contain the given amount of the given TOKEN
  2. R == value - the box should contain the given value of the given register R
  3. boxName ? condition - the box named boxName should check condition in its script.
We discuss these conditions in the sections below.
  1. Amount of ERGs in the box
Each box should store a minimum amount of ERGs. This is checked when the creating transaction is validated. In the diagram the amount of ERGs is always shown as the first line (e.g. B: ERG or B - minErg - txFee ). The value type ascription B: ERG is optional and may be used for readability. When the value is given as a formula, then this formula should be respected by the transaction which creates the box.
It is important to understand that variables like amount and txFee are not named properties of the boxes. They are parameters of the whole diagram and representing some amounts. Or put it another way, they are shared parameters between transactions (e.g. Sell Order and Swap transactions from DEX example below share the tAmt parameter). So the same name is tied to the same value throughout the diagram (this is where the tooling would help a lot). However, when it comes to on-chain validation of those values, only explicit conditions which are marked with ? are transformed to ErgoScript. At the same time, all other conditions are ensured off-chain during transaction building (for example in an application using Appkit API) and transaction validation when it is added to the blockchain.
  1. Amount of T token
A box can store values of many tokens. The tokens on the diagram are named and a value variable may be associated with the token T using value: T expression. The value may be given by formula. If the formula is prefixed with a box name like boxName ? formula , then it is should also be checked in the guarding script of the boxName box. This additional specification is very convenient because 1) it allows to validate the visual design automatically, and 2) the conditions specified in the boxes of a diagram are enough to synthesize the necessary guarding scripts. (more about this below at “From Diagrams To ErgoScript Contracts”)
  1. Tx Inputs
Inputs are connected to the corresponding transaction by orange arrows. An input arrow may have a label of the following forms:
  1. [email protected] - optional name with an index i.e. [email protected] or u/2 . This is a property of the target endpoint of the arrow. The name is used in conditions of related boxes and the index is the position of the corresponding box in the INPUTS collection of the transaction.
  2. !action - is a property of the source of the arrow and gives a name for an alternative spending path of the box (we will see this in DEX example)
Because of alternative spending paths, a box may have many outgoing orange arrows, in which case they should be labeled with different actions.
  1. Transaction
A transaction spends input boxes and creates output boxes. The input boxes are given by the orange arrows and the labels are expected to put inputs at the right indexes in INPUTS collection. The output boxes are given by the green arrows. Each transaction should preserve a strict balance of ERG values (sum of inputs == sum of outputs) and for each token the sum of inputs >= the sum of outputs. The design diagram requires an explicit specification of the ERG and token values for all of the output boxes to avoid implicit errors and ensure better readability.
  1. Tx Outputs
Outputs are connected to the corresponding transaction by green arrows. An output arrow may have a label of the following [email protected] , where an optional name is accompanied with an index i.e. [email protected] or u/2 . This is a property of the source endpoint of the arrow. The name is used in conditions of the related boxes and the index is the position of the corresponding box in the OUTPUTS collection of the transaction.
Example: Decentralized Exchange (DEX)
Now let's use the above described notation to design a FlowCard for a DEX dApp. It is simple enough yet also illustrates all of the key features of FlowCard diagrams which we've introduced in the previous section.
The dApp scenario is shown in the figure below: There are three participants (buyer, seller and DEX) of the DEX dApp and five different transaction types, which are created by participants. The buyer wants to swap ergAmt of ERGs for tAmt of TID tokens (or vice versa, the seller wants to sell TID tokens for ERGs, who sends the order first doesn't matter). Both the buyer and the seller can cancel their orders any time. The DEX off-chain matching service can find matching orders and create the Swap transaction to complete the exchange.
The following diagram fully (and formally) specifies all of the five transactions that must be created off-chain by the DEX dApp. It also specifies all of the spending conditions that should be verified on-chain.

https://preview.redd.it/fnt5f4qp9tv41.png?width=1614&format=png&auto=webp&s=34f145f9a6d622454906857e645def2faba057bd
Let's discuss the FlowCard diagram and the logic of each transaction in details:
Buy Order Transaction
A buyer creates a Buy Order transaction. The transaction spends E amount of ERGs (which we will write E: ERG ) from one or more boxes in the pk(buyer) wallet. The transaction creates a bid box with ergAmt: ERG protected by the buyOrder script. The buyOrder script is synthesized from the specification (see below at “From Diagrams To ErgoScript Contracts”) either manually or automatically by a tool. Even though we don't need to define the buyOrder script explicitly during designing, at run time the bid box should contain the buyOrder script as the guarding proposition (which checks the box spending conditions), otherwise the conditions specified in the diagram will not be checked.
The change box is created to make the input and output sums of the transaction balanced. The transaction fee box is omitted because it can be added automatically by the tools. In practice, however, the designer can add the fee box explicitly to the a diagram. It covers the cases of more complex transactions (like Swap) where there are many ways to pay the transaction fee.
Cancel Buy, Cancel Sell Transactions
At any time, the buyer can cancel the order by sending CancelBuy transaction. The transaction should satisfy the guarding buyOrder contract which protects the bid box. As you can see on the diagram, both the Cancel and the Swap transactions can spend the bid box. When a box has spending alternatives (or spending paths) then each alternative is identified by a unique name prefixed with ! (!cancel and !swap for the bid box). Each alternative path has specific spending conditions. In our example, when the Cancel Buy transaction spends the bid box the ?buyer condition should be satisfied, which we read as “the signature for the buyer address should be presented in the transaction”. Therefore, only buyer can cancel the buy order. This “signature” condition is only required for the !cancel alternative spending path and not required for !swap .
Sell Order Transaction
The Sell Order transaction is similar to the BuyOrder in that it deals with tokens in addition to ERGs. The transaction spends E: ERG and T: TID tokens from seller's wallet (specified as pk(seller) contract). The two outputs are ask and change . The change is a standard box to balance transaction. The ask box keeps tAmt: TID tokens for the exchange and minErg: ERG - the minimum amount of ERGs required in every box.
Swap Transaction
This is a key transaction in the DEX dApp scenario. The transaction has several spending conditions on the input boxes and those conditions are included in the buyOrder and sellOrder scripts (which are verified when the transaction is added to the blockchain). However, on the diagram those conditions are not specified in the bid and ask boxes, they are instead defined in the output boxes of the transaction.
This is a convention for improved usability because most of the conditions relate to the properties of the output boxes. We could specify those properties in the bid box, but then we would have to use more complex expressions.
Let's consider the output created by the arrow labeled with [email protected] . This label tells us that the output is at the index 0 in the OUTPUTS collection of the transaction and that in the diagram we can refer to this box by the buyerOut name. Thus we can label both the box itself and the arrow to give the box a name.
The conditions shown in the buyerOut box have the form bid ? condition , which means they should be verified on-chain in order to spend the bid box. The conditions have the following meaning:
  • tAmt: TID requires the box to have tAmt amount of TID token
  • R4 == bid.id requires R4 register in the box to be equal to id of the bid box.
  • script == buyer requires the buyerOut box to have the script of the wallet where it is located on the diagram, i.e. pk(buyer)
Similar properties are added to the sellerOut box, which is specified to be at index 1 and the name is given to it using the label on the box itself, rather than on the arrow.
The Swap transaction spends two boxes bid and ask using the !swap spending path on both, however unlike !cancel the conditions on the path are not specified. This is where the bid ? and ask ? prefixes come into play. They are used so that the conditions listed in the buyerOut and sellerOut boxes are moved to the !swap spending path of the bid and ask boxes correspondingly.
If you look at the conditions of the output boxes, you will see that they exactly specify the swap of values between seller's and buyer's wallets. The buyer gets the necessary amount of TID token and seller gets the corresponding amount of ERGs. The Swap transaction is created when there are two matching boxes with buyOrder and sellOrder contracts.
From Diagrams To ErgoScript Contracts
What is interesting about FlowCard specifications is that we can use them to automatically generate the necessary ErgoTree scripts. With the appropriate tooling support this can be done automatically, but with the lack of thereof, it can be done manually. Thus, the FlowCard allows us to capture and visually represent all of the design choices and semantic details of an Ergo dApp.
What we are going to do next is to mechanically create the buyOrder contract from the information given in the DEX flow card.
Recall that each script is a proposition (boolean valued expression) which should evaluate to true to allow spending of the box. When we have many conditions to be met at the same time we can combine them in a logical formula using the AND binary operation, and if we have alternatives (not necessarily exclusive) we can put them into the OR operation.
The buyOrder box has the alternative spending paths !cancel and !swap . Thus the ErgoScript code should have OR operation with two arguments - one for each spending path.
/** buyOrder contract */ { val cancelCondition = {} val swapCondition = {} cancelCondition || swapCondition } 
The formula for the cancelCondition expression is given in the !cancel spending path of the buyOrder box. We can directly include it in the script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = {} cancelCondition || swapCondition } 
For the !swap spending path of the buyOrder box the conditions are specified in the buyerOut output box of the Swap transaction. If we simply include them in the swapCondition then we get a syntactically incorrect script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = { tAmt: TID && R4 == bid.id && @contract } cancelCondition || swapCondition } 
We can however translate the conditions from the diagram syntax to ErgoScript expressions using the following simple rules
  1. [email protected] ==> val buyerOut = OUTPUTS(0)
  2. tAmt: TID ==> tid._2 == tAmt where tid = buyerOut.tokens(TID)
  3. R4 == bid.id ==> R4 == SELF.id where R4 = buyerOut.R4[Coll[Byte]].get
  4. script == buyer ==> buyerOut.propositionBytes == buyer.propBytes
Note, in the diagram TID represents a token id, but ErgoScript doesn't have access to the tokens by the ids so we cannot write tokens.getByKey(TID) . For this reason, when the diagram is translated into ErgoScript, TID becomes a named constant of the index in tokens collection of the box. The concrete value of the constant is assigned when the BuyOrder transaction with the buyOrder box is created. The correspondence and consistency between the actual tokenId, the TID constant and the actual tokens of the buyerOut box is ensured by the off-chain application code, which is completely possible since all of the transactions are created by the application using FlowCard as a guiding specification. This may sound too complicated, but this is part of the translation from diagram specification to actual executable application code, most of which can be automated.
After the transformation we can obtain a correct script which checks all the required preconditions for spending the buyOrder box.
/** buyOrder contract */ def DEX(buyer: Addrss, seller: Address, TID: Int, ergAmt: Long, tAmt: Long) { val cancelCondition: SigmaProp = { buyer } // verify buyer's sig (ProveDlog) val swapCondition = OUTPUTS.size > 0 && { // securing OUTPUTS access val buyerOut = OUTPUTS(0) // from [email protected] buyerOut.tokens.size > TID && { // securing tokens access val tid = buyerOut.tokens(TID) val regR4 = buyerOut.R4[Coll[Byte]] regR4.isDefined && { // securing R4 access val R4 = regR4.get tid._2 == tAmt && // from tAmt: TID R4 == SELF.id && // from R4 == bid.id buyerOut.propositionBytes == buyer.propBytes // from script == buyer } } } cancelCondition || swapCondition } 
A similar script for the sellOrder box can be obtained using the same translation rules. With the help of the tooling the code of contracts can be mechanically generated from the diagram specification.
Conclusions
Declarative programming models have already won the battle against imperative programming in many application domains like Big Data, Stream Processing, Deep Learning, Databases, etc. Ergo is pioneering the declarative model of dApp development as a better and safer alternative to the now popular imperative model of smart contracts.
The concept of FlowCard shifts the focus from writing ErgoScript contracts to the overall flow of values (hence the name), in such a way, that ErgoScript can always be generated from them. You will never need to look at the ErgoScript code once the tooling is in place.
Here are the possible next steps for future work:
  1. Storage format for FlowCard Spec and the corresponding EIP standardized file format (Json/XML/Protobuf). This will allow various tools (Diagram Editor, Runtime, dApps etc) to create and use *.flowcard files.
  2. FlowCard Viewer, which can generate the diagrams from *.flowcard files.
  3. FlowCard Runtime, which can run *.flowcard files, create and send transactions to Ergo network.
  4. FlowCard Designer Tool, which can simplify development of complex diagrams . This will make designing and validation of Ergo contracts a pleasant experience, more like drawing rather than coding. In addition, the correctness of the whole dApp scenario can be verified and controlled by the tooling.
submitted by Guilty_Pea to CryptoCurrencies [link] [comments]

FlowCards: A Declarative Framework for Development of Ergo dApps

FlowCards: A Declarative Framework for Development of Ergo dApps
Introduction
ErgoScript is the smart contract language used by the Ergo blockchain. While it has concise syntax adopted from Scala/Kotlin, it still may seem confusing at first because conceptually ErgoScript is quite different compared to conventional languages which we all know and love. This is because Ergo is a UTXO based blockchain, whereas smart contracts are traditionally associated with account based systems like Ethereum. However, Ergo's transaction model has many advantages over the account based model and with the right approach it can even be significantly easier to develop Ergo contracts than to write and debug Solidity code.
Below we will cover the key aspects of the Ergo contract model which makes it different:
Paradigm
The account model of Ethereum is imperative. This means that the typical task of sending coins from Alice to Bob requires changing the balances in storage as a series of operations. Ergo's UTXO based programming model on the other hand is declarative. ErgoScript contracts specify conditions for a transaction to be accepted by the blockchain (not changes to be made in the storage state as result of the contract execution).
Scalability
In the account model of Ethereum both storage changes and validity checks are performed on-chain during code execution. In contrast, Ergo transactions are created off-chain and only validation checks are performed on-chain thus reducing the amount of operations performed by every node on the network. In addition, due to immutability of the transaction graph, various optimization strategies are possible to improve throughput of transactions per second in the network. Light verifying nodes are also possible thus further facilitating scalability and accessibility of the network.
Shared state
The account-based model is reliant on shared mutable state which is known to lead to complex semantics (and subtle million dollar bugs) in the context of concurrent/ distributed computation. Ergo's model is based on an immutable graph of transactions. This approach, inherited from Bitcoin, plays well with the concurrent and distributed nature of blockchains and facilitates light trustless clients.
Expressive Power
Ethereum advocated execution of a turing-complete language on the blockchain. It theoretically promised unlimited potential, however in practice severe limitations came to light from excessive blockchain bloat, subtle multi-million dollar bugs, gas costs which limit contract complexity, and other such problems. Ergo on the flip side extends UTXO to enable turing-completeness while limiting the complexity of the ErgoScript language itself. The same expressive power is achieved in a different and more semantically sound way.
With the all of the above points, it should be clear that there are a lot of benefits to the model Ergo is using. In the rest of this article I will introduce you to the concept of FlowCards - a dApp developer component which allows for designing complex Ergo contracts in a declarative and visual way.

From Imperative to Declarative

In the imperative programming model of Ethereum a transaction is a sequence of operations executed by the Ethereum VM. The following Solidity function implements a transfer of tokens from sender to receiver . The transaction starts when sender calls this function on an instance of a contract and ends when the function returns.
// Sends an amount of existing coins from any caller to an address function send(address receiver, uint amount) public { require(amount <= balances[msg.sender], "Insufficient balance."); balances[msg.sender] -= amount; balances[receiver] += amount; emit Sent(msg.sender, receiver, amount); } 
The function first checks the pre-conditions, then updates the storage (i.e. balances) and finally publishes the post-condition as the Sent event. The gas which is consumed by the transaction is sent to the miner as a reward for executing this transaction.
Unlike Ethereum, a transaction in Ergo is a data structure holding a list of input coins which it spends and a list of output coins which it creates preserving the total balances of ERGs and tokens (in which Ergo is similar to Bitcoin).
Turning back to the example above, since Ergo natively supports tokens, therefore for this specific example of sending tokens we don't need to write any code in ErgoScript. Instead we need to create the ‘send’ transaction shown in the following figure, which describes the same token transfer but declaratively.
https://preview.redd.it/sxs3kesvrsv41.png?width=1348&format=png&auto=webp&s=582382bc26912ff79114d831d937d94b6988e69f
The picture visually describes the following steps, which the network user needs to perform:
  1. Select unspent sender's boxes, containing in total tB >= amount of tokens and B >= txFee + minErg ERGs.
  2. Create an output target box which is protected by the receiver public key with minErg ERGs and amount of T tokens.
  3. Create one fee output protected by the minerFee contract with txFee ERGs.
  4. Create one change output protected by the sender public key, containing B - minErg - txFee ERGs and tB - amount of T tokens.
  5. Create a new transaction, sign it using the sender's secret key and send to the Ergo network.
What is important to understand here is that all of these steps are preformed off-chain (for example using Appkit Transaction API) by the user's application. Ergo network nodes don't need to repeat this transaction creation process, they only need to validate the already formed transaction. ErgoScript contracts are stored in the inputs of the transaction and check spending conditions. The node executes the contracts on-chain when the transaction is validated. The transaction is valid if all of the conditions are satisfied.
Thus, in Ethereum when we “send amount from sender to recipient” we are literally editing balances and updating the storage with a concrete set of commands. This happens on-chain and thus a new transaction is also created on-chain as the result of this process.
In Ergo (as in Bitcoin) transactions are created off-chain and the network nodes only verify them. The effects of the transaction on the blockchain state is that input coins (or Boxes in Ergo's parlance) are removed and output boxes are added to the UTXO set.
In the example above we don't use an ErgoScript contract but instead assume a signature check is used as the spending pre-condition. However in more complex application scenarios we of course need to use ErgoScript which is what we are going to discuss next.

From Changing State to Checking Context

In the send function example we first checked the pre-condition (require(amount <= balances[msg.sender],...) ) and then changed the state (i.e. update balances balances[msg.sender] -= amount ). This is typical in Ethereum transactions. Before we change anything we need to check if it is valid to do so.
In Ergo, as we discussed previously, the state (i.e. UTXO set of boxes) is changed implicitly when a valid transaction is included in a block. Thus we only need to check the pre-conditions before the transaction can be added to the block. This is what ErgoScript contracts do.
It is not possible to “change the state” in ErgoScript because it is a language to check pre-conditions for spending coins. ErgoScript is a purely functional language without side effects that operates on immutable data values. This means all the inputs, outputs and other transaction parameters available in a script are immutable. This, among other things, makes ErgoScript a very simple language that is easy to learn and safe to use. Similar to Bitcoin, each input box contains a script, which should return the true value in order to 1) allow spending of the box (i.e. removing from the UTXO set) and 2) adding the transaction to the block.
If we are being pedantic, it is therefore incorrect (strictly speaking) to think of ErgoScript as the language of Ergo contracts, because it is the language of propositions (logical predicates, formulas, etc.) which protect boxes from “illegal” spending. Unlike Bitcoin, in Ergo the whole transaction and a part of the current blockchain context is available to every script. Therefore each script may check which outputs are created by the transaction, their ERG and token amounts (we will use this capability in our example DEX contracts), current block number etc.
In ErgoScript you define the conditions of whether changes (i.e. coin spending) are allowed to happen in a given context. This is in contrast to programming the changes imperatively in the code of a contract.
While Ergo's transaction model unlocks a whole range of applications like (DEX, DeFi Apps, LETS, etc), designing contracts as pre-conditions for coin spending (or guarding scripts) directly is not intuitive. In the next sections we will consider a useful graphical notation to design contracts declaratively using FlowCard Diagrams, which is a visual representation of executable components (FlowCards).
FlowCards aim to radically simplify dApp development on the Ergo platform by providing a high-level declarative language, execution runtime, storage format and a graphical notation.
We will start with a high level of diagrams and go down to FlowCard specification.

FlowCard Diagrams

The idea behind FlowCard diagrams is based on the following observations: 1) An Ergo box is immutable and can only be spent in the transaction which uses it as an input. 2) We therefore can draw a flow of boxes through transactions, so that boxes flowing in to the transaction are spent and those flowing out are created and added to the UTXO. 3) A transaction from this perspective is simply a transformer of old boxes to the new ones preserving the balances of ERGs and tokens involved.
The following figure shows the main elements of the Ergo transaction we've already seen previously (now under the name of FlowCard Diagram).
https://preview.redd.it/06aqkcd1ssv41.png?width=1304&format=png&auto=webp&s=106eda730e0526919aabd5af9596b97e45b69777
There is a strictly defined meaning (semantics) behind every element of the diagram, so that the diagram is a visual representation (or a view) of the underlying executable component (called FlowCard).
The FlowCard can be used as a reusable component of an Ergo dApp to create and initiate the transaction on the Ergo blockchain. We will discuss this in the coming sections.
Now let's look at the individual pieces of the FlowCard diagram one by one.
1. Name and Parameters
Each flow card is given a name and a list of typed parameters. This is similar to a template with parameters. In the above figure we can see the Send flow card which has five parameters. The parameters are used in the specification.
2. Contract Wallet
This is a key element of the flow card. Every box has a guarding script. Often it is the script that checks a signature against a public key. This script is trivial in ErgoScript and is defined like the def pk(pubkey: Address) = { pubkey } template where pubkey is a parameter of the type Address . In the figure, the script template is applied to the parameter pk(sender) and thus a concrete wallet contract is obtained. Therefore pk(sender) and pk(receiver) yield different scripts and represent different wallets on the diagram, even though they use the same template.
Contract Wallet contains a set of all UTXO boxes which have a given script derived from the given script template using flow card parameters. For example, in the figure, the template is pk and parameter pubkey is substituted with the `sender’ flow card parameter.
3. Contract
Even though a contract is a property of a box, on the diagram we group the boxes by their contracts, therefore it looks like the boxes belong to the contracts, rather than the contracts belong to the boxes. In the example, we have three instantiated contracts pk(sender) , pk(receiver) and minerFee . Note, that pk(sender) is the instantiation of the pk template with the concrete parameter sender and minerFee is the instantiation of the pre-defined contract which protects the miner reward boxes.
4. Box name
In the diagram we can give each box a name. Besides readability of the diagram, we also use the name as a synonym of a more complex indexed access to the box in the contract. For example, change is the name of the box, which can also be used in the ErgoScript conditions instead of OUTPUTS(2) . We also use box names to associate spending conditions with the boxes.
5. Boxes in the wallet
In the diagram, we show boxes (darker rectangles) as belonging to the contract wallets (lighter rectangles). Each such box rectangle is connected with a grey transaction rectangle by either orange or green arrows or both. An output box (with an incoming green arrow) may include many lines of text where each line specifies a condition which should be checked as part of the transaction. The first line specifies the condition on the amount of ERG which should be placed in the box. Other lines may take one of the following forms:
  1. amount: TOKEN - the box should contain the given amount of the given TOKEN
  2. R == value - the box should contain the given value of the given register R
  3. boxName ? condition - the box named boxName should check condition in its script.
We discuss these conditions in the sections below.
6. Amount of ERGs in the box
Each box should store a minimum amount of ERGs. This is checked when the creating transaction is validated. In the diagram the amount of ERGs is always shown as the first line (e.g. B: ERG or B - minErg - txFee ). The value type ascription B: ERG is optional and may be used for readability. When the value is given as a formula, then this formula should be respected by the transaction which creates the box.
It is important to understand that variables like amount and txFee are not named properties of the boxes. They are parameters of the whole diagram and representing some amounts. Or put it another way, they are shared parameters between transactions (e.g. Sell Order and Swap transactions from DEX example below share the tAmt parameter). So the same name is tied to the same value throughout the diagram (this is where the tooling would help a lot). However, when it comes to on-chain validation of those values, only explicit conditions which are marked with ? are transformed to ErgoScript. At the same time, all other conditions are ensured off-chain during transaction building (for example in an application using Appkit API) and transaction validation when it is added to the blockchain.
7. Amount of T token
A box can store values of many tokens. The tokens on the diagram are named and a value variable may be associated with the token T using value: T expression. The value may be given by formula. If the formula is prefixed with a box name like boxName ? formula , then it is should also be checked in the guarding script of the boxName box. This additional specification is very convenient because 1) it allows to validate the visual design automatically, and 2) the conditions specified in the boxes of a diagram are enough to synthesize the necessary guarding scripts. (more about this below at “From Diagrams To ErgoScript Contracts”)
8. Tx Inputs
Inputs are connected to the corresponding transaction by orange arrows. An input arrow may have a label of the following forms:
  1. [email protected] - optional name with an index i.e. [email protected] or u/2 . This is a property of the target endpoint of the arrow. The name is used in conditions of related boxes and the index is the position of the corresponding box in the INPUTS collection of the transaction.
  2. !action - is a property of the source of the arrow and gives a name for an alternative spending path of the box (we will see this in DEX example)
Because of alternative spending paths, a box may have many outgoing orange arrows, in which case they should be labeled with different actions.
9. Transaction
A transaction spends input boxes and creates output boxes. The input boxes are given by the orange arrows and the labels are expected to put inputs at the right indexes in INPUTS collection. The output boxes are given by the green arrows. Each transaction should preserve a strict balance of ERG values (sum of inputs == sum of outputs) and for each token the sum of inputs >= the sum of outputs. The design diagram requires an explicit specification of the ERG and token values for all of the output boxes to avoid implicit errors and ensure better readability.
10. Tx Outputs
Outputs are connected to the corresponding transaction by green arrows. An output arrow may have a label of the following [email protected] , where an optional name is accompanied with an index i.e. [email protected] or u/2 . This is a property of the source endpoint of the arrow. The name is used in conditions of the related boxes and the index is the position of the corresponding box in the OUTPUTS collection of the transaction.

Example: Decentralized Exchange (DEX)

Now let's use the above described notation to design a FlowCard for a DEX dApp. It is simple enough yet also illustrates all of the key features of FlowCard diagrams which we've introduced in the previous section.
The dApp scenario is shown in the figure below: There are three participants (buyer, seller and DEX) of the DEX dApp and five different transaction types, which are created by participants. The buyer wants to swap ergAmt of ERGs for tAmt of TID tokens (or vice versa, the seller wants to sell TID tokens for ERGs, who sends the order first doesn't matter). Both the buyer and the seller can cancel their orders any time. The DEX off-chain matching service can find matching orders and create the Swap transaction to complete the exchange.
The following diagram fully (and formally) specifies all of the five transactions that must be created off-chain by the DEX dApp. It also specifies all of the spending conditions that should be verified on-chain.

https://preview.redd.it/piogz0v9ssv41.png?width=1614&format=png&auto=webp&s=e1b503a635ad3d138ef91e2f0c3b726e78958646
Let's discuss the FlowCard diagram and the logic of each transaction in details:
Buy Order Transaction
A buyer creates a Buy Order transaction. The transaction spends E amount of ERGs (which we will write E: ERG ) from one or more boxes in the pk(buyer) wallet. The transaction creates a bid box with ergAmt: ERG protected by the buyOrder script. The buyOrder script is synthesized from the specification (see below at “From Diagrams To ErgoScript Contracts”) either manually or automatically by a tool. Even though we don't need to define the buyOrder script explicitly during designing, at run time the bid box should contain the buyOrder script as the guarding proposition (which checks the box spending conditions), otherwise the conditions specified in the diagram will not be checked.
The change box is created to make the input and output sums of the transaction balanced. The transaction fee box is omitted because it can be added automatically by the tools. In practice, however, the designer can add the fee box explicitly to the a diagram. It covers the cases of more complex transactions (like Swap) where there are many ways to pay the transaction fee.
Cancel Buy, Cancel Sell Transactions
At any time, the buyer can cancel the order by sending CancelBuy transaction. The transaction should satisfy the guarding buyOrder contract which protects the bid box. As you can see on the diagram, both the Cancel and the Swap transactions can spend the bid box. When a box has spending alternatives (or spending paths) then each alternative is identified by a unique name prefixed with ! (!cancel and !swap for the bid box). Each alternative path has specific spending conditions. In our example, when the Cancel Buy transaction spends the bid box the ?buyer condition should be satisfied, which we read as “the signature for the buyer address should be presented in the transaction”. Therefore, only buyer can cancel the buy order. This “signature” condition is only required for the !cancel alternative spending path and not required for !swap .
Sell Order Transaction
The Sell Order transaction is similar to the BuyOrder in that it deals with tokens in addition to ERGs. The transaction spends E: ERG and T: TID tokens from seller's wallet (specified as pk(seller) contract). The two outputs are ask and change . The change is a standard box to balance transaction. The ask box keeps tAmt: TID tokens for the exchange and minErg: ERG - the minimum amount of ERGs required in every box.
Swap Transaction
This is a key transaction in the DEX dApp scenario. The transaction has several spending conditions on the input boxes and those conditions are included in the buyOrder and sellOrder scripts (which are verified when the transaction is added to the blockchain). However, on the diagram those conditions are not specified in the bid and ask boxes, they are instead defined in the output boxes of the transaction.
This is a convention for improved usability because most of the conditions relate to the properties of the output boxes. We could specify those properties in the bid box, but then we would have to use more complex expressions.
Let's consider the output created by the arrow labeled with [email protected] . This label tells us that the output is at the index 0 in the OUTPUTS collection of the transaction and that in the diagram we can refer to this box by the buyerOut name. Thus we can label both the box itself and the arrow to give the box a name.
The conditions shown in the buyerOut box have the form bid ? condition , which means they should be verified on-chain in order to spend the bid box. The conditions have the following meaning:
  • tAmt: TID requires the box to have tAmt amount of TID token
  • R4 == bid.id requires R4 register in the box to be equal to id of the bid box.
  • script == buyer requires the buyerOut box to have the script of the wallet where it is located on the diagram, i.e. pk(buyer)
Similar properties are added to the sellerOut box, which is specified to be at index 1 and the name is given to it using the label on the box itself, rather than on the arrow.
The Swap transaction spends two boxes bid and ask using the !swap spending path on both, however unlike !cancel the conditions on the path are not specified. This is where the bid ? and ask ? prefixes come into play. They are used so that the conditions listed in the buyerOut and sellerOut boxes are moved to the !swap spending path of the bid and ask boxes correspondingly.
If you look at the conditions of the output boxes, you will see that they exactly specify the swap of values between seller's and buyer's wallets. The buyer gets the necessary amount of TID token and seller gets the corresponding amount of ERGs. The Swap transaction is created when there are two matching boxes with buyOrder and sellOrder contracts.

From Diagrams To ErgoScript Contracts

What is interesting about FlowCard specifications is that we can use them to automatically generate the necessary ErgoTree scripts. With the appropriate tooling support this can be done automatically, but with the lack of thereof, it can be done manually. Thus, the FlowCard allows us to capture and visually represent all of the design choices and semantic details of an Ergo dApp.
What we are going to do next is to mechanically create the buyOrder contract from the information given in the DEX flow card.
Recall that each script is a proposition (boolean valued expression) which should evaluate to true to allow spending of the box. When we have many conditions to be met at the same time we can combine them in a logical formula using the AND binary operation, and if we have alternatives (not necessarily exclusive) we can put them into the OR operation.
The buyOrder box has the alternative spending paths !cancel and !swap . Thus the ErgoScript code should have OR operation with two arguments - one for each spending path.
/** buyOrder contract */ { val cancelCondition = {} val swapCondition = {} cancelCondition || swapCondition } 
The formula for the cancelCondition expression is given in the !cancel spending path of the buyOrder box. We can directly include it in the script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = {} cancelCondition || swapCondition } 
For the !swap spending path of the buyOrder box the conditions are specified in the buyerOut output box of the Swap transaction. If we simply include them in the swapCondition then we get a syntactically incorrect script.
/** buyOrder contract */ { val cancelCondition = { buyer } val swapCondition = { tAmt: TID && R4 == bid.id && @contract } cancelCondition || swapCondition } 
We can however translate the conditions from the diagram syntax to ErgoScript expressions using the following simple rules
  1. [email protected] ==> val buyerOut = OUTPUTS(0)
  2. tAmt: TID ==> tid._2 == tAmt where tid = buyerOut.tokens(TID)
  3. R4 == bid.id ==> R4 == SELF.id where R4 = buyerOut.R4[Coll[Byte]].get
  4. script == buyer ==> buyerOut.propositionBytes == buyer.propBytes
Note, in the diagram TID represents a token id, but ErgoScript doesn't have access to the tokens by the ids so we cannot write tokens.getByKey(TID) . For this reason, when the diagram is translated into ErgoScript, TID becomes a named constant of the index in tokens collection of the box. The concrete value of the constant is assigned when the BuyOrder transaction with the buyOrder box is created. The correspondence and consistency between the actual tokenId, the TID constant and the actual tokens of the buyerOut box is ensured by the off-chain application code, which is completely possible since all of the transactions are created by the application using FlowCard as a guiding specification. This may sound too complicated, but this is part of the translation from diagram specification to actual executable application code, most of which can be automated.
After the transformation we can obtain a correct script which checks all the required preconditions for spending the buyOrder box.
/** buyOrder contract */ def DEX(buyer: Addrss, seller: Address, TID: Int, ergAmt: Long, tAmt: Long) { val cancelCondition: SigmaProp = { buyer } // verify buyer's sig (ProveDlog) val swapCondition = OUTPUTS.size > 0 && { // securing OUTPUTS access val buyerOut = OUTPUTS(0) // from [email protected] buyerOut.tokens.size > TID && { // securing tokens access val tid = buyerOut.tokens(TID) val regR4 = buyerOut.R4[Coll[Byte]] regR4.isDefined && { // securing R4 access val R4 = regR4.get tid._2 == tAmt && // from tAmt: TID R4 == SELF.id && // from R4 == bid.id buyerOut.propositionBytes == buyer.propBytes // from script == buyer } } } cancelCondition || swapCondition } 
A similar script for the sellOrder box can be obtained using the same translation rules. With the help of the tooling the code of contracts can be mechanically generated from the diagram specification.

Conclusions

Declarative programming models have already won the battle against imperative programming in many application domains like Big Data, Stream Processing, Deep Learning, Databases, etc. Ergo is pioneering the declarative model of dApp development as a better and safer alternative to the now popular imperative model of smart contracts.
The concept of FlowCard shifts the focus from writing ErgoScript contracts to the overall flow of values (hence the name), in such a way, that ErgoScript can always be generated from them. You will never need to look at the ErgoScript code once the tooling is in place.
Here are the possible next steps for future work:
  1. Storage format for FlowCard Spec and the corresponding EIP standardized file format (Json/XML/Protobuf). This will allow various tools (Diagram Editor, Runtime, dApps etc) to create and use *.flowcard files.
  2. FlowCard Viewer, which can generate the diagrams from *.flowcard files.
  3. FlowCard Runtime, which can run *.flowcard files, create and send transactions to Ergo network.
  4. FlowCard Designer Tool, which can simplify development of complex diagrams . This will make designing and validation of Ergo contracts a pleasant experience, more like drawing rather than coding. In addition, the correctness of the whole dApp scenario can be verified and controlled by the tooling.
submitted by eleanorcwhite to btc [link] [comments]

Groestlcoin 6th Anniversary Release

Introduction

Dear Groestlers, it goes without saying that 2020 has been a difficult time for millions of people worldwide. The groestlcoin team would like to take this opportunity to wish everyone our best to everyone coping with the direct and indirect effects of COVID-19. Let it bring out the best in us all and show that collectively, we can conquer anything.
The centralised banks and our national governments are facing unprecedented times with interest rates worldwide dropping to record lows in places. Rest assured that this can only strengthen the fundamentals of all decentralised cryptocurrencies and the vision that was seeded with Satoshi's Bitcoin whitepaper over 10 years ago. Despite everything that has been thrown at us this year, the show must go on and the team will still progress and advance to continue the momentum that we have developed over the past 6 years.
In addition to this, we'd like to remind you all that this is Groestlcoin's 6th Birthday release! In terms of price there have been some crazy highs and lows over the years (with highs of around $2.60 and lows of $0.000077!), but in terms of value– Groestlcoin just keeps getting more valuable! In these uncertain times, one thing remains clear – Groestlcoin will keep going and keep innovating regardless. On with what has been worked on and completed over the past few months.

UPDATED - Groestlcoin Core 2.18.2

This is a major release of Groestlcoin Core with many protocol level improvements and code optimizations, featuring the technical equivalent of Bitcoin v0.18.2 but with Groestlcoin-specific patches. On a general level, most of what is new is a new 'Groestlcoin-wallet' tool which is now distributed alongside Groestlcoin Core's other executables.
NOTE: The 'Account' API has been removed from this version which was typically used in some tip bots. Please ensure you check the release notes from 2.17.2 for details on replacing this functionality.

How to Upgrade?

Windows
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer.
OSX
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), run the dmg and drag Groestlcoin Core to Applications.
Ubuntu
http://groestlcoin.org/forum/index.php?topic=441.0

Other Linux

http://groestlcoin.org/forum/index.php?topic=97.0

Download

Download the Windows Installer (64 bit) here
Download the Windows Installer (32 bit) here
Download the Windows binaries (64 bit) here
Download the Windows binaries (32 bit) here
Download the OSX Installer here
Download the OSX binaries here
Download the Linux binaries (64 bit) here
Download the Linux binaries (32 bit) here
Download the ARM Linux binaries (64 bit) here
Download the ARM Linux binaries (32 bit) here

Source

ALL NEW - Groestlcoin Moonshine iOS/Android Wallet

Built with React Native, Moonshine utilizes Electrum-GRS's JSON-RPC methods to interact with the Groestlcoin network.
GRS Moonshine's intended use is as a hot wallet. Meaning, your keys are only as safe as the device you install this wallet on. As with any hot wallet, please ensure that you keep only a small, responsible amount of Groestlcoin on it at any given time.

Features

Download

iOS
Android

Source

ALL NEW! – HODL GRS Android Wallet

HODL GRS connects directly to the Groestlcoin network using SPV mode and doesn't rely on servers that can be hacked or disabled.
HODL GRS utilizes AES hardware encryption, app sandboxing, and the latest security features to protect users from malware, browser security holes, and even physical theft. Private keys are stored only in the secure enclave of the user's phone, inaccessible to anyone other than the user.
Simplicity and ease-of-use is the core design principle of HODL GRS. A simple recovery phrase (which we call a Backup Recovery Key) is all that is needed to restore the user's wallet if they ever lose or replace their device. HODL GRS is deterministic, which means the user's balance and transaction history can be recovered just from the backup recovery key.

Features

Download

Main Release (Main Net)
Testnet Release

Source

ALL NEW! – GroestlcoinSeed Savior

Groestlcoin Seed Savior is a tool for recovering BIP39 seed phrases.
This tool is meant to help users with recovering a slightly incorrect Groestlcoin mnemonic phrase (AKA backup or seed). You can enter an existing BIP39 mnemonic and get derived addresses in various formats.
To find out if one of the suggested addresses is the right one, you can click on the suggested address to check the address' transaction history on a block explorer.

Features

Live Version (Not Recommended)

https://www.groestlcoin.org/recovery/

Download

https://github.com/Groestlcoin/mnemonic-recovery/archive/master.zip

Source

ALL NEW! – Vanity Search Vanity Address Generator

NOTE: NVidia GPU or any CPU only. AMD graphics cards will not work with this address generator.
VanitySearch is a command-line Segwit-capable vanity Groestlcoin address generator. Add unique flair when you tell people to send Groestlcoin. Alternatively, VanitySearch can be used to generate random addresses offline.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then VanitySearch is the right choice for you to create a more personalized address.
VanitySearch is a groestlcoin address prefix finder. If you want to generate safe private keys, use the -s option to enter your passphrase which will be used for generating a base key as for BIP38 standard (VanitySearch.exe -s "My PassPhrase" FXPref). You can also use VanitySearch.exe -ps "My PassPhrase" which will add a crypto secure seed to your passphrase.
VanitySearch may not compute a good grid size for your GPU, so try different values using -g option in order to get the best performances. If you want to use GPUs and CPUs together, you may have best performances by keeping one CPU core for handling GPU(s)/CPU exchanges (use -t option to set the number of CPU threads).

Features

Usage

https://github.com/Groestlcoin/VanitySearch#usage

Download

Source

ALL NEW! – Groestlcoin EasyVanity 2020

Groestlcoin EasyVanity 2020 is a windows app built from the ground-up and makes it easier than ever before to create your very own bespoke bech32 address(es) when whilst not connected to the internet.
If you're tired of the random, cryptic bech32 addresses generated by regular Groestlcoin clients, then Groestlcoin EasyVanity2020 is the right choice for you to create a more personalised bech32 address. This 2020 version uses the new VanitySearch to generate not only legacy addresses (F prefix) but also Bech32 addresses (grs1 prefix).

Features

Download

Source

Remastered! – Groestlcoin WPF Desktop Wallet (v2.19.0.18)

Groestlcoin WPF is an alternative full node client with optional lightweight 'thin-client' mode based on WPF. Windows Presentation Foundation (WPF) is one of Microsoft's latest approaches to a GUI framework, used with the .NET framework. Its main advantages over the original Groestlcoin client include support for exporting blockchain.dat and including a lite wallet mode.
This wallet was previously deprecated but has been brought back to life with modern standards.

Features

Remastered Improvements

Download

Source

ALL NEW! – BIP39 Key Tool

Groestlcoin BIP39 Key Tool is a GUI interface for generating Groestlcoin public and private keys. It is a standalone tool which can be used offline.

Features

Download

Windows
Linux :
 pip3 install -r requirements.txt python3 bip39\_gui.py 

Source

ALL NEW! – Electrum Personal Server

Groestlcoin Electrum Personal Server aims to make using Electrum Groestlcoin wallet more secure and more private. It makes it easy to connect your Electrum-GRS wallet to your own full node.
It is an implementation of the Electrum-grs server protocol which fulfils the specific need of using the Electrum-grs wallet backed by a full node, but without the heavyweight server backend, for a single user. It allows the user to benefit from all Groestlcoin Core's resource-saving features like pruning, blocks only and disabled txindex. All Electrum-GRS's feature-richness like hardware wallet integration, multi-signature wallets, offline signing, seed recovery phrases, coin control and so on can still be used, but connected only to the user's own full node.
Full node wallets are important in Groestlcoin because they are a big part of what makes the system be trust-less. No longer do people have to trust a financial institution like a bank or PayPal, they can run software on their own computers. If Groestlcoin is digital gold, then a full node wallet is your own personal goldsmith who checks for you that received payments are genuine.
Full node wallets are also important for privacy. Using Electrum-GRS under default configuration requires it to send (hashes of) all your Groestlcoin addresses to some server. That server can then easily spy on your transactions. Full node wallets like Groestlcoin Electrum Personal Server would download the entire blockchain and scan it for the user's own addresses, and therefore don't reveal to anyone else which Groestlcoin addresses they are interested in.
Groestlcoin Electrum Personal Server can also broadcast transactions through Tor which improves privacy by resisting traffic analysis for broadcasted transactions which can link the IP address of the user to the transaction. If enabled this would happen transparently whenever the user simply clicks "Send" on a transaction in Electrum-grs wallet.
Note: Currently Groestlcoin Electrum Personal Server can only accept one connection at a time.

Features

Download

Windows
Linux / OSX (Instructions)

Source

UPDATED – Android Wallet 7.38.1 - Main Net + Test Net

The app allows you to send and receive Groestlcoin on your device using QR codes and URI links.
When using this app, please back up your wallet and email them to yourself! This will save your wallet in a password protected file. Then your coins can be retrieved even if you lose your phone.

Changes

Download

Main Net
Main Net (FDroid)
Test Net

Source

UPDATED – Groestlcoin Sentinel 3.5.06 (Android)

Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets).
Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that wallet.
Groestlcoin Sentinel is a fork of Groestlcoin Samourai Wallet with all spending and transaction building code removed.

Changes

Download

Source

UPDATED – P2Pool Test Net

Changes

Download

Pre-Hosted Testnet P2Pool is available via http://testp2pool.groestlcoin.org:21330/static/

Source

submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

What is an API? - YouTube Variables in QF-Test  GUI Test Tool for Java, Web and Windows Bank as a service Api banking - Full HOWTO: Getting started with Cointrexer XL  Binance Huobi ... C++/Game Tutorial 11: Static Variables And Pass By Reference!

There are two variations of the original bitcoin program available; one with a graphical user interface (usually referred to as just “Bitcoin”), and a 'headless' version (called bitcoind).They are completely compatible with each other, and take the same command-line arguments, read the same configuration file, and read and write the same data files. Bitcoin-accepting sites; Myths; Meetups; Transaction fees; Mining Help. Mining; Where to rent Mining services; Pooled mining; Mining hardware comparison; Technical Resources. PHP developer intro; API reference (JSON-RPC) Protocol specification; Press coverage; More technical articles; Markets and Trading. Economics; Marketing resources ... Bitcoin developers have been working to reduce transaction malleability among standard transaction types, one outcome of those efforts is BIP 141: Segregated Witness, which is supported by Bitcoin Core and was activated in August 2017. When SegWit is not being used, new transactions should not depend on previous transactions which have not been added to the block chain yet, especially if large ... This site aims to provide the docs you need to understand Bitcoin and start building Bitcoin-based applications. BitGo Platform V2 supports Bitcoin, Ethereum, Ripple, Litecoin, and more through a single, unified interface. Get started with BitGo Platform V2 here. Overview. BitGo provides a simple and robust REST-ful API as well as a simple client javascript SDK to integrate multi-signature technology into your existing bitcoin applications and services.

[index] [1397] [22029] [31104] [37828] [15468] [3042] [34117] [13201] [9559] [33495]

What is an API? - YouTube

Want to create your own automated trading strategy? Are you new to Mudrex? Mudrex University is an expert training program which includes a series of tutorial videos to help anyone who is new to ... My #1 Recommendation To Make a Full-Time Income Online. CLICK HERE https://bigmarktv.com/Start/ Copy & Paste Videos and Earn $100 to $300 Per Day - FUL... Manual Testing - GUI Testing ... Bitcoin SV DevCon 2020 Day 1 WeAreDevelopers 227 watching. Live now; Lecture 4 Reference Variables in C++ Part 1 hindi - Duration: 8:28. C++ by Saurabh Shukla Sir ... What exactly is an API? Learn how to design your first API by clicking here: https://developer.mulesoft.com/tutorials-and-howtos/quick-start/designing-your-f... On the fourth episode of AoG Pro Tips, we’ll inspect the Google Home Graph. Watch now to learn about Home Graph API to debug state problems in your smart home integration with our Developer ...

#